Browse > Article
http://dx.doi.org/10.14478/ace.2021.1012

Selective Copper-Catalyzed Azidation and Amination of Aryl Halides with Sodium Azide  

Paik, Seunguk (Department of Chemical Engineering, Keimyung University)
Publication Information
Applied Chemistry for Engineering / v.32, no.2, 2021 , pp. 224-227 More about this Journal
Abstract
A rapid and selective copper-catalyzed amination of aryl halides with sodium azide was established by using 10 mol % of CuI, and 20 mol % of N,N'-dimethylethylenediamine in DMSO under microwave irradiation for 10 min. The catalytic system with 4-substituted aryl iodides was found to be the most effective leading to a nearly complete conversion.
Keywords
Azidation; Amination; Microwave irradiation; Copper catalyst; Aryl halides;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Y. Kwong and S. L. Buchwald, Mild and efficient copper-catalyzed amination of aryl bromides with primary alkyl amines, Org. Lett., 5, 793-796 (2003).   DOI
2 P. Ji, J. H. Atherton, and M. I. Page, Copper-catalyzed amination of aryl halides in liquid ammonia, J. Org. Chem., 77, 7471-7478 (2012).   DOI
3 H. Zhao, H. Fu, and R. Qiao, Copper-catalyzed direct amination of ortho-functionalized haloarenes with sodium azide, J. Org. Chem., 75, 3311-3316 (2010).   DOI
4 Y. A. Cho, D. S. Kim, H. R. Ahn, B. Canturk, G. A. Molander, and J. Ham, Preparation of potassium azidoaryltrifluoroborates and their cross-coupling with aryl halides, Org. Lett., 11, 4330-4333 (2009).   DOI
5 J. T. Markiewiez, O. Wiest, and P. Helquist, Synthesis of primary amines through a copper-assisted aromatic substitution reaction with sodium azide, J. Org. Chem., 75, 4887-4890 (2010).   DOI
6 A. Monguchi, T. Maejima, S. Mori, T. Maegawa, and H. Sajika, Copper-mediated reductive amination of aryl halides with trimethylsilyl azide, Chem. Eur. J., 16, 7372-7375 (2010).   DOI
7 S. Paik, M. G. Jung, Rapid microwave-assisted copper-catalyzed nitration of aromatic halides with nitrite salts, Bull. Korean Chem. Soc., 33, 689-691 (2012).   DOI
8 S. Ahammed, A. Saha, and B. C. Ranu, Hydrogenation of azides over copper nanoparticle surface using ammonium formate in water, J. Org. Chem., 76, 7235-7239 (2011).   DOI
9 S. Brase, C. Gil, K. Knepper, and V. Zimmermann, Organic azides: An exploding diversity of a unique class of compounds, Angew. Chem. Int. Ed., 44, 5188-5240 (2005).   DOI
10 E. V. Scriven and K. Turnbull, Azides: Their preparation and synthetic uses, Chem. Rev., 88, 297-368 (1988).   DOI
11 K. V. Kutonova, M. E. Trusova, P. S. Postnikov, V. D. Filimonov, and J. Parello, A simple and effective synthesis of aryl azide via arenediazonium tosylates, Synthesis, 45, 2706-2710 (2013).   DOI
12 J. F. Bunnett, and R. E. Zahler, Aromatic nucleophilic substitution reactions, Chem. Rev., 49, 273-412 (1951).   DOI
13 J. Andersen, U. Madsen, F, Bjorkling, and X. Liang, Rapid synthesis of aryl azides from aryl halides under mild conditions, Synlett, 14, 2209-2213 (2005).   DOI
14 D. Ma and Q, Cai, Copper/amino acids catalyzed cross-couplings of aryl and vinyl halides with nucleophiles, Acc. Chem. Res., 41, 1450-1460 (2008).   DOI