• Title/Summary/Keyword: Catalytic Metal

Search Result 626, Processing Time 0.028 seconds

Growth Mechanism of Self-Catalytic Ga2O3 Nano-Burr Grown by RF Sputtering

  • Park, Sin-Yeong;Choe, Gwang-Hyeon;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.462-462
    • /
    • 2013
  • Gallium Oxide (Ga2O3) has been widely investigated for the optoelectronic applications due to its wide bandgap and the optical transparency. Recently, with the development of fabrication techniques in nanometer scale semiconductor materials, there have been an increasing number of extensive reports on the synthesis and characterization of Ga2O3 nano-structures such as nano-wires, nanobelts, and nano-dots. In contrast to typical vaporliquid-solid growth mode with metal catalysts to synthesis 1-dimensional nano-wires, there are several difficulties in fabricating the nanostructures by using sputtering techniques. This is attributed to the fact that relatively low growth temperatures and higher growth rate compared with chemical vapor deposition method. In this study, Ga2O3 chestnut burr were synthesized by using radio-frequency magnetron sputtering method. In contrast to typical sputtering method with sintered ceramic target, a Ga2O3 powder (99.99% purity) was used as a sputtering target. Several samples were prepared with varying the growth parameters, especially he growth time and the growth temperature to investigate the growth mechanism. Samples were characterized by using XRD, SEM, and PL measurements. In this presentation, the details of fabrication process and physical properties of Ga2O3 nano chestnut burr will be reported.

  • PDF

The Investigation of Electro-Oxidation of Methanol on Pt-Ru Electrode Surfaces by in-situ Raman Spectroscopy

  • She, Chun-Xing;Xiang, Juann;Ren, Bin;Zhong, Qi-Ling;Wang, Xiao-Cong;Tian, Zhong-Qun
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.4
    • /
    • pp.221-225
    • /
    • 2002
  • Assisted by the highly sensitive confocal microprobe Raman spectrometer and proper surface roughening procedure, the Raman investigation on the adsorption and reaction of methanol was performed on Pt-Ru electrodes with different coverages. A detailed description of the roughening process of the Pt electrodes and the underpotential deposition of the Ru was given. Reasonably good Raman signal reflecting the metal-carbon vibration and CO vibration was detected. The appearance of vibrations of the Ru oxides, together with the existence of Ru-C, Pt-C and CO bands, clearly demonstrates the participation of the bi-functional mechanism during the oxidation process of methanol on Pt-Ru electrodes. The Pt-Ru electrode was found to have a higher catalytic activity over Pt electrodes. This preliminary study shows that electrochemical Raman spectroscopy can be applied to the study of rough electrode surface.

Indium and Gallium-Mediated Addition Reactions

  • Lee, Phil-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.17-28
    • /
    • 2007
  • Indium and gallium have emerged as useful metals in organic synthesis as a result of its intriguing chemical properties of reactivity, selectivity, and low toxicity. Although indium belongs to a main metal in group 13, its first ionization potential energy is very low and stable in H2O and O2. Therefore, indium-mediated organic reactions are of our current interest. On the basis of these properties of indium, many efficient indium-mediated organic reactions have been recently developed, such as the addition reactions of allylindium to carbonyl and iminium groups, the indium-mediated synthesis of 2-(2-hydroxyethyl)homoallenylsilanes, the indiummediated allylation of keto esters with allyl halides, sonochemical Reformatsky reaction using indium, the indium-mediated selective introduction of allenyl and propargyl groups at C-4 position of 2-azetidinones, the indium-mediated Michael addition and Hosomi-Sakurai reactions, the indium-mediated β-allylation, β- propargylation and β-allenylation onto α,β-unsaturated ketones, the highly efficient 1,4-addition of 1,3-diesters to conjugated enones by indium and TMSCl, and the intramolecular carboindation reactions. Also, we found gallium-mediated organic reactions such as addition reactions of propargylgallium to carbonyl group and regioselective allylgallation of terminal alkynes.

Electrochemical Study of [Ni63-Se)2μ4-Se)3(dppf)3] Cluster and Its Catalytic Activity towards the Electrochemical Reduction of Carbon Dioxide

  • Park, Deog-Su;Jabbar, Md. Abdul;Park, Hyun;Lee, Hak-Myoung;Shin, Sung-Chul;Shim, Yoon-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.1996-2002
    • /
    • 2007
  • The redox behavior of a [Ni6(μ3-Se)2(μ4-Se)3(Fe(η 5-C5H4P-Ph2)2)3] (= [Ni-Se-dppf], dppf = 1,1-bis(diphenylphosphino) ferrocene) cluster was studied using platinum (Pt) and glassy carbon electrodes (GCE) in nonaqueous media. The cluster showed electrochemical activity at the potential range between +1.6 and ?1.6 V. In the negative region (0 to ?1.6 V), the cluster exhibited two-step reductions. The first step was one-electron reversible, while the second step was a five-electron quasi-reversible process. On the other hand, in the positive region (0 to +1.6 V), the first step involved one-electron quasi-reversible process. The applicability of the cluster was found towards the electrocatalytic reduction of CO2 and was evaluated by experiments using rotating ring disc electrode (RRDE). RRDE experiments demonstrated that two electrons were involved in the electrocatalytic reduction of CO2 to CO at the Se-Ni-dppf-modified electrode.

A Study of Catalysts for Decomposition of ADN-Based Liquid Monopropellant (ADN기반 단일액상추진제 분해용 촉매 제조 및 특성 연구)

  • Jeon, Jong-Ki;Heo, Sujeong;Jo, Young Min;Kim, Taegyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.412-415
    • /
    • 2017
  • In this study, the decomposition performance of ammonia dinitramide (ADN) based liquid monopropellant was evaluated by using metal supported alumina bead catalyst. Alumina bead was calcined at $1200^{\circ}C$, and Pt and Cu were impregnated on alumina bead by excess water impregnation using a rotary evaporator. The decomposition temperature ($T_{dec}$) of ADN-based liquid monopropellant was measured in a home-made batch reactor. The decomposition temperature of Cu/$Al_2O_3$ catalyst was lower than that of Pt/$Al_2O_3$ catalyst, and $T_{dec}$ was about $130^{\circ}C$.

  • PDF

Effect of B-Cation Doping on Oxygen Vacancy Formation and Migration in LaBO3: A Density Functional Theory Study

  • Kwon, Hyunguk;Park, Jinwoo;Kim, Byung-Kook;Han, Jeong Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.331-337
    • /
    • 2015
  • $LaBO_3$ (B = Cr, Mn, Fe, Co, and Ni) perovskites, the most common perovskite-type mixed ionic-electronic conductors (MIECs), are promising candidates for intermediate-temperature solid oxide fuel cell (IT-SOFC) cathodes. The catalytic activity on MIEC-based cathodes is closely related to the bulk ionic conductivity. Doping B-site cations with other metals may be one way to enhance the ionic conductivity, which would also be sensitively influenced by the chemical composition of the dopants. Here, using density functional theory (DFT) calculations, we quantitatively assess the activation energies of bulk oxide ion diffusion in $LaBO_3$ perovskites with a wide range of combinations of B-site cations by calculating the oxygen vacancy formation and migration energies. Our results show that bulk oxide ion diffusion dominantly depends on oxygen vacancy formation energy rather than on the migration energy. As a result, we suggest that the late transition metal-based perovskites have relatively low oxygen vacancy formation energies, and thereby exhibit low activation energy barriers. Our results will provide useful insight into the design of new cathode materials with better performance.

Adsorption characteristics of tert-Butyl Mercaptan on Impregnated Activated Carbon (첨착활성탄을 이용한 tert-Butyl Mercaptan의 흡착특성 연구)

  • Kim S. B.
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.1 s.18
    • /
    • pp.47-52
    • /
    • 2003
  • The adsorption characteristics of rert-butyl mercaptan(TBM) on base activated carbon and activated carbon impregnated with $CuCl_2$ or KI were studied. Adsorption of TBM on the surface of the KI or $CuCl_2$ impregnated activated carbon was detected by gas chromatograph equipped with a flame photometric detector. The amount of adsorption on those impregnated carbon found to be 7 or 8 times greater than on the non-impregnated activated carbon and varied according to the concentration of impregnated metal. FT-IR measurement showed that major reaction occuring on the surface of the catalytic adsorbent was dimerization of TBM into di-tert-butyl disulfide which had no stench.

  • PDF

Fabrication and Structural Properties of Ge-Sb-Te Thin Film by MOCVD for PRAM Application (상변화 메모리 응용을 위한 MOCVD 방법을 통한 Ge-Sb-Te 계 박막의 증착 및 구조적인 특성분석)

  • Kim, Ran-Young;Kim, Ho-Gi;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.5
    • /
    • pp.411-414
    • /
    • 2008
  • The germanium films were deposited by metal organic chemical vapor deposition using $Ge(allyl)_4$ precursors on TiAlN substrates. Deposition of germanium films was only possible with a presence of $Sb(iPr)_3$, which means that $Sb(iPr)_3$ takes a catalytic role by a thermal decomposition of $Sb(iPr)_3$ for Ge film deposition. Also, as Sb bubbler temperature increases, deposition rate of the Ge films increases at a substrate temperature of $370^{\circ}C$. The GeTe thin films were fabricated by MOCVD with $Te(tBu)_2$ on Ge thin film. The GeTe films were grown by the tellurium deposition at $230-250^{\circ}C$ on Ge films deposited on TiAlN electrode in the presence of Sb at $370^{\circ}C$. The GeTe film growth on Ge films depends on the both the tellurium deposition temperature and deposition time. Also, using $Sb(iPr)_3$ precursor, GeSbTe films with hexagonal structures were fabricated on GeTe thin films. GeSbTe films were deposited in trench structure with 200 nm*120 nm small size.

THE PARTIAL COMBUSTION OF METHANE TO SYNGAS OVER PRECIOUS METALS AND NICKEL CATALYSTS SUPPORTED ON -γAL2O3 AND CEO2

  • Seo, Ho-Joon
    • Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.131-137
    • /
    • 2005
  • The catalytic activity of precious metals(Rh, Pd, Pt) and nickel catalysts supported on ${\gamma}-Al_2O_3\;and\;CeO_2$ in the partial combustion of methane(PCM) to syngas was investigated based on the product distribution in a fixed bed now reactor under atmospheric condition and also on analysis results by SEM, XPS, TPD, BET, and XRD. The activity of the catalysts based on the syngas yield increased in the sequence $Rh(5)/CeO_2{\geq}Ni(5)/CeO_2>>Rh(5)/Al_2O_3>Pd(5)/Al_2O_3>Ni(5)/Al_2O_3$. Compared to the precious catalysts, the syngas yield and stability of the $Ni(5)/CeO_2$ catalyst were almost similar to $(5)/CeO_2$ catalyst, and superior to these of any other catalysts. The syngas yield of $Ni(5)/CeO_2$ catalyst was 90.66% at 1023 K. It could be suggested to be the redox cycle of the successive reaction and formation of active site, $Ni^{2-}$ and the lattice oxygen, $O^{2-}$ produced due to reduction of $Ce^{4-}$ to $Ce^{3-}$.

Determination of Rhodium by Differential Pulse Polarography (펄스차이 폴라로그래피를 이용한 로듐의 정량)

  • Kwon, Young-Soon;Hong, Mi-Jeong;Czae, Myung-Zoon
    • Analytical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.1-4
    • /
    • 2000
  • Determination of trace rhodium, based on catalytic reduction of protons by the adsorbed Rhformaldehyde complexes formed in formaldehyde-hydrochloric acid medium, was demonstrated. The condition for the measurements of Rh at trace levels was 0.004%(w/v) formaldehyde-0.75M hydrochloric acid. In this medium detection limit was $7.0{\times}10^{-12}M$ and the linear dynamic range was $1.0{\times}10^{-11}{\sim}1.0{\times}10^{-8}M$ Rh. There were no interferences from other platinum group metal ions even in the presence of a 500-fold excess.

  • PDF