• 제목/요약/키워드: Catalysts

검색결과 2,495건 처리시간 0.031초

FT 합성반응용 철촉매에 미치는 촉매특성에 미치는 $SiO_2$ 첨가효과 (Effects of $SiO_2$ on Catalytic Properties of Iron-Based Catalysts for Fischer-Tropsch Synthesis)

  • 천동현;김학주;현순택;양정훈;이호태;양정일;정헌
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.861-862
    • /
    • 2009
  • Precipitated iron-based catalysts are highly promising for the Fischer-Tropsch synthesis (FTS), in particular for the low temperature FTS below $280^{\circ}C$, because of their high activity and low cost. $SiO_2$ is an essential promoter for the precipitated iron-based catalysts to improve the attrition strength and physical stability. In this study, we carried out FTS over precipitated iron-based catalysts with and without $SiO_2$ in a fixed-bed reactor. The catalysts were prepared by a conventional co-precipitation method. In case of the catalysts with $SiO_2$, we used two comparative preparation methods, i.e., incorporation of $SiO_2$ before precipitation (denoted as precipitated $SiO_2$) and after precipitation (denoted as binder $SiO_2$), respectively. The addition of $SiO_2$ crucially affects both physico-chemical properties and catalytic peformance of precipitated iron-based catalysts.

  • PDF

고정원에서 배출되는 $NO_x/SO_x$의 동시제거를 위한 SCR 촉매의 제조법에 관한 연구: I. $V_2O_5-MoO_3/TiO_2$ 촉매들의 표면특성과 반응성 (Studies on the Preparation for the Simultaneous Removal of NO and $SO_2$ from Stationary Sources I.Surface properties and reactivity of $V_2O_5-MoO_3/TiO_2$ catalysts)

  • 구미화;정석진
    • 한국대기환경학회지
    • /
    • 제8권1호
    • /
    • pp.58-67
    • /
    • 1992
  • For removing $NO_x$ and $SO_x$ from the flue gases emitted from stationary sources, $V_2O_5-MoO_3/TiO_2$ catalysts were prepared by the conventional impregnation method (aqueous solution) and a sort of surface fixation method(nonaqueous solution) as reported excellent reproducibility catalysts. And these catalysts observed their catalytic activities as well as their surface properties. V-Mo-O oxide, prepared from nonaqueous solution of $VOCl_3$ and $Mo(CO)_6$ and aqeous solution method, was supported as amorphous state by XRD and SEM measurements. The infrared spectra of fresh and used catalysts showed that in used catalysts, V=O bands decreased and new bands of vanadium oxysulfate bands were very sensitive. So the catalysts prepared from nonaqueous solution may bring about the high activity. Results from catalytic activity measurements at 350$^\circ$C, in the presence of $SO_2, NO$ conversion was more increased than in absence of $SO_2$. As the $MoO_3$ was added to $V_2O_5/TiO_2 system, SO_2$ conversion increased. It found that from the results, $V_2O-5-MoO_3/TiO_2$ catalysts prepared from an nonaqueous solution may bring about the high activity for both the reaction of NO and $SO_2$ removal.

  • PDF

Preparation of PET Using Homogeneous Catalysts. II. Effect of BHPP, NPG and PD in $Sb_2$$O_3$ Glycol Solution Catalysts

  • Son, Tae-Won;Son, Hae-Shik;Kim, Won-Ki;Lee, Dong-Won;Kim, Kwang-Il;Jeong, Jae-Hun
    • Fibers and Polymers
    • /
    • 제1권1호
    • /
    • pp.6-11
    • /
    • 2000
  • In the polycondensation reaction of polyethyleneterephthalate(PET), $Sb_2$$O_3$, can react effectively as a catalyst, if physically transformed. $Sb_2$$O_3$ powder is transformed into liquid solution by dissolving in ethylene glycol(EG). Homogeneous catalyst is made by mixing this liquid solution with glycols having different solubility. The efficient reaction of PET polymerization is expected by using homogeneous catalyst. PET was synthesized using homogeneous catalysts of 4 wt.% $Sb_2$$O_3$ solution dissolved in glycol[EG, 2,2-bis(4-(2-hydroxyethoxy)phenol)propane(BHPP), neopentyl glycol(NPO), and 1,3-propandiol(PD)]. PET using EG-BHPP($Sb_2$$O_3$) catalysts shows the highest I.V. within a reaction time of 120 min. In the p-d analysis, PET using EG-BHPP($Sb_2$$O_3$) catalysts has the fastest propagation rate and slowest degradation rate. EG-BHPP($Sb_2$$O_3$) catalysts are more efficient than EG($Sb_2$$O_3$) catalysts and $Sb_2$$O_3$ powder catalysts.

  • PDF

Recent Progress in the Identification of Active Sites in Pyrolyzed Fe-N/C Catalysts and Insights into Their Role in Oxygen Reduction Reaction

  • Sa, Young Jin;Kim, Jae Hyung;Joo, Sang Hoon
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권3호
    • /
    • pp.169-182
    • /
    • 2017
  • Iron and nitrogen codoped carbon (Fe-N/C) catalysts have emerged as one of the most promising replacements for state-of-the-art platinum-based electrocatalysts for oxygen reduction reaction (ORR) in polymer electrolyte fuel cells. During the last decade, significant progress has been achieved in Fe-N/C catalysts in terms of ORR activity improvement and active site identification. In this review, we focus on recent efforts towards advancing our understanding of the structure of active sites in Fe-N/C catalysts. We summarize the spectroscopic and electrochemical methods that are used to analyze active site structure in Fe-N/C catalysts, and the relationship between active site structure and ORR activity in these catalysts. We provide an overview of recently reported synthetic strategies that can generate active sites in Fe-N/C catalysts preferentially. We then discuss newly suggested active sites in Fe-N/C catalysts. Finally, we conclude this review with a brief future outlook.

루테늄 산화물 나노 섬유 지지체에 담지된 고 분산성 촉매의 전기화학적 거동 (Electrochemical Behavior of Well-dispersed Catalysts on Ruthenium Oxide Nanofiber Supports)

  • 안건형;안효진
    • 한국분말재료학회지
    • /
    • 제24권2호
    • /
    • pp.96-101
    • /
    • 2017
  • Well-dispersed platinum catalysts on ruthenium oxide nanofiber supports are fabricated using electrospinning, post-calcination, and reduction methods. To obtain the well-dispersed platinum catalysts, the surface of the nanofiber supports is modified using post-calcination. The structures, morphologies, crystal structures, chemical bonding energies, and electrochemical performance of the catalysts are investigated. The optimized catalysts show well-dispersed platinum nanoparticles (1-2 nm) on the nanofiber supports as well as a uniform network structure. In particular, the well-dispersed platinum catalysts on the ruthenium oxide nanofiber supports display excellent catalytic activity for oxygen reduction reactions with a half-wave potential ($E_{1/2}$) of 0.57 V and outstanding long-term stability after 2000 cycles, resulting in a lower $E_{1/2}$ potential degradation of 19 mV. The enhanced electrochemical performance for oxygen reduction reactions results from the well-dispersed platinum catalysts and unique nanofiber supports.

네오디뮴이 첨가된 니켈 촉매의 티오펜 탈황 반응 (Hydrodesulfuriztion of Thiophene over Neodymium Added Nickel Catalysts)

  • 문영환;임선기
    • 공업화학
    • /
    • 제7권5호
    • /
    • pp.913-924
    • /
    • 1996
  • 본 연구에서는 소량의 네오디뮴이 첨가된 니켈 촉매에 대하여 티오펜 탈황 반응을 조사하였으며, 촉매 제조 방법에 따라, 공침법으로 제조된 비담지 NdNi 촉매, 비담지 금속간 화합물 $NdNi_5$ 촉매, 활성탄에 담지된 NdNi 촉매 등이 연구되었다. 공침법으로 제조된 비담지 NdNi 촉매의 경우 소량의 네오디뮴이 첨가되면 티오펜 탈황 반응성이 급격히 증가하여 니켈 촉매에서 네오디뮴의 역할이 아주 큼을 알 수 있다. 비담지 금속간 화합물 $NdNi_5$ 촉매는 소성, 황화 처리의 과정을 거치면서 금속간 화합물이 파괴되고 산화물, 황화물로 각각 변하였다. 비담지 촉매의 경우 티오펜 탈황 반응성은 촉매의 표면적으로 설명이 가능하고 네오디뮴의 역할은 니켈 촉매의 표면적을 높게 유지시키는 구조 촉진제(structural promoter)로 작용한다. 니켈의 분산도가 다른, 금속간 화합물 $NdNi_5$ 촉매, 공침법으로 제조된 NdNi 촉매, 활성탄에 담지 된 NdNi 촉매 순으로 니켈을 기준으로 할 때 티오펜 탈황 반응활성이 각각 10배씩 증가하였다.

  • PDF

Polymer Electrolyte Membrane Fuel Cells용 Pt/C 캐소드 전극촉매 특성에 미치는 반응 온도 (Various Temperatures Affecting Characteristics of Pt/C Cathode Catalysts for Polymer Electrolyte Membrane Fuel Cells)

  • 유성열;강석민;이진아;이충균;류호진
    • 한국재료학회지
    • /
    • 제21권3호
    • /
    • pp.180-185
    • /
    • 2011
  • This study is aimed to increase the activity of cathodic catalysts for PEMFCs(Polymer Electrolyte Membrane Fuel Cells). we investigated the temperature effect of 20wt% Pt/C catalysts at five different temperatures. The catalysts were synthesized by using chemical reduction method. Before adding the formaldehyde as reducing agent, process was undergone for 2 hours at the room temperature (RT), $40^{\circ}C$, $60^{\circ}C$, $80^{\circ}C$ and $100^{\circ}C$, respectively. The performances of synthesize catalysts are compared. The electrochemical oxygen reduction reaction (ORR) was studied on 20wt% Pt/C catalysts by using a glassy carbon electrode through cyclic voltammetric curves (CV) in a 1M H2SO4 solution. The ORR specific activities of 20wt% Pt/C catalysts increased to give a relative ORR catalytic activity ordering of $80^{\circ}C$ > $100^{\circ}C$ > $60^{\circ}C$ > $40^{\circ}C$ > RT. Electrochemical active surface area (EAS) was calculated with cyclic voltammetry analysis. Prepared Pt/C (at $80^{\circ}C$, $100^{\circ}C$) catalysts has higher ESA than other catalysts. Physical characterization was made by using X-ray diffraction (XRD) and transmission electron microscope (TEM). The TEM images of the carbon supported platinum electrocatalysts ($80^{\circ}C$, $100^{\circ}C$) showed homogenous particle distribution with particle size of about 2~3.5 nm. We found that a higher reaction temperature resulted in more uniform particle distribution than lower reaction temperature and then the XRD results showed that the crystalline structure of the synthesized catalysts are seen FCC structure.

Effect of Iron Species in Mesoporous Fe-N/C Catalysts with Different Shapes on Activity Towards Oxygen Reduction Reaction

  • Kang, Taehong;Lee, Jiyeon;Kim, Jong Gyeong;Pak, Chanho
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권1호
    • /
    • pp.137-145
    • /
    • 2021
  • Among the non-precious metal catalysts, iron-nitrogen doped carbon (Fe-N/C) catalysts have been recognized as the most promising candidates for an alternative to Pt-based catalysts for the oxygen reduction reaction (ORR) under alkaline and acidic conditions. In this study, the nano replication method using mesoporous silica, which features tunable primary particle sizes and shape, is employed to prepare the mesoporous Fe-N/C catalysts with different shapes. Platelet SBA-15, irregular KIT-6, and spherical silica particle (SSP) were selected as a template to generate three different kinds of shapes of the mesoporous Fe-N/C catalyst. Physicochemical properties of mesoporous Fe-N/C catalysts are characterized by using small-angle X-ray diffraction, nitrogen adsorption-desorption isotherms, and scanning electron microscopy images. According to the electrochemical evaluation, there is no morphological preference of mesoporous Fe-N/C catalysts toward the ORR activity with half-cell configuration under alkaline electrolyte. By implementing X-ray photoelectron spectroscopy analysis of Fe and N atoms in the mesoporous Fe-N/C catalysts, it is possible to verify that the activity towards ORR highly depends on the portions of "Fe-N" species in the catalysts regardless of the shape of catalysts. It was suggested that active site distribution in the Fe-N/C is one important factor towards ORR activity.

귀금속 계열 촉매의 수성가스전환반응특성과 유효인자 (Noble metal catalysts for water gas shift reaction and their effectiveness factor)

  • 임성광;배중면;김기현
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.514-517
    • /
    • 2008
  • Water gas shift(WGS) is an important step in fuel process for fuel cells, and improperness of commercial WGS catalysts for use in fuel cell systems has prompted numerous researches on noble metal catalysts. A selected noble metal catalyst for water gas shift reaction(WGS) was prepared with various metal loadings. The prepared catalysts were tested under two feeding conditions. At moderate residence time, carbon monoxide conversion was much higher on the noble metal catalysts as compared to commercial high-temperature shift catalyst. Effects of metal loading were examined by activity tests at short residence time. Higher metal loading effected higher reaction rate. The kinetic data was fitted to simple reaction equations and effectiveness factor was estimated. The results suggest the necessity of a structural design for the highly active noble metal catalysts.

  • PDF

A Study on the Characteristics of Plasma Blacks Prepared by Plasma Pyrolysis Over Metals Coated Honeycomb Catalysts

  • Park, Soo-Yeop;Lee, Joong-Kee;Yoo, Kyung-Seun;Cho, Won-Ihl;Baek, Young-Soon
    • Carbon letters
    • /
    • 제4권2호
    • /
    • pp.74-78
    • /
    • 2003
  • Four kinds of plasma blacks were prepared by plasma pyrolysis under various metallic catalysts coated on honeycomb, and investigated the catalytic effect on the characteristics of the plasma blacks prepared under plasma pyrolysis condition. Pt, Pt-Rh, and Pd catalysts were employed as active materials to prepare the plasma blacks. In the experimental range studied, the metallic catalysts influenced on surface area, particle size, surface oxygen content and electrical conductivity of the plasma blacks prepared. It was showed that more dense particle of plasma blacks were prepared under existence of metallic catalysts. Presence of the metallic catalyst reduces the electrical resistivity of plasma blacks due to the decrease in the amount of oxygen functional groups. The highest electrical conductivity of plasma black was observed in the Pt catalyst and then followed by those Pt-Rh, Pd and bare cordierite honeycomb.

  • PDF