Browse > Article
http://dx.doi.org/10.33961/jecst.2020.00892

Effect of Iron Species in Mesoporous Fe-N/C Catalysts with Different Shapes on Activity Towards Oxygen Reduction Reaction  

Kang, Taehong (Graduate Program of Energy Technology, School of Integrated Technology, Institute of Integrated Technology, Gwangju Institute of Science and Technology)
Lee, Jiyeon (Graduate Program of Energy Technology, School of Integrated Technology, Institute of Integrated Technology, Gwangju Institute of Science and Technology)
Kim, Jong Gyeong (Graduate Program of Energy Technology, School of Integrated Technology, Institute of Integrated Technology, Gwangju Institute of Science and Technology)
Pak, Chanho (Graduate Program of Energy Technology, School of Integrated Technology, Institute of Integrated Technology, Gwangju Institute of Science and Technology)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.1, 2021 , pp. 137-145 More about this Journal
Abstract
Among the non-precious metal catalysts, iron-nitrogen doped carbon (Fe-N/C) catalysts have been recognized as the most promising candidates for an alternative to Pt-based catalysts for the oxygen reduction reaction (ORR) under alkaline and acidic conditions. In this study, the nano replication method using mesoporous silica, which features tunable primary particle sizes and shape, is employed to prepare the mesoporous Fe-N/C catalysts with different shapes. Platelet SBA-15, irregular KIT-6, and spherical silica particle (SSP) were selected as a template to generate three different kinds of shapes of the mesoporous Fe-N/C catalyst. Physicochemical properties of mesoporous Fe-N/C catalysts are characterized by using small-angle X-ray diffraction, nitrogen adsorption-desorption isotherms, and scanning electron microscopy images. According to the electrochemical evaluation, there is no morphological preference of mesoporous Fe-N/C catalysts toward the ORR activity with half-cell configuration under alkaline electrolyte. By implementing X-ray photoelectron spectroscopy analysis of Fe and N atoms in the mesoporous Fe-N/C catalysts, it is possible to verify that the activity towards ORR highly depends on the portions of "Fe-N" species in the catalysts regardless of the shape of catalysts. It was suggested that active site distribution in the Fe-N/C is one important factor towards ORR activity.
Keywords
Non-Precious Metal Catalyst; Mesoporous Fe-N/C Catalyst; Iron-Nitrogen Species; Oxygen Reduction Reaction; Alkaline Electrolyte;
Citations & Related Records
연도 인용수 순위
  • Reference
1 (a) C. H. Cui, L. Gan, M. Heggen, S. Rudi and P. Strasser, Nature Mater., 2013, 12(8), 765-771.   DOI
2 C. W. B. Bezerra, L. Zhang, K. Lee, H. Liu, A. L. Marques, E. P. Marques, H. Wang and J. Zhang, Electrochim. Acta, 2008, 53(15), 4937-4951.   DOI
3 S. Gottesfeld, D. R. Dekel, M. Page, C. Bae, Y. S. Yan, P. Zelenay and Y. S. Kim, J. Power Sources, 2018, 375, 170-184.   DOI
4 Y. J. Sa, J. H. Kim, S. H. Joo, J. Electrochem. Sci. Technol., 2017, 8(3), 169-182.   DOI
5 X. Li, B. N. Popov, T. Kawahara and H. Yanagi, J. Power Sources, 2011, 196(4), 1717-1722.   DOI
6 D. R. Dekel, J Power Sources, 2018, 375, 158-169.   DOI
7 S. Maurya, C. H. Fujimoto, M. R. Hibbs, C. N. Villarrubia and Y. S. Kim, Chem. Mater., 2018, 30(7), 2188-2192.   DOI
8 K. S. Park, S.-A. Jin, K. H. Lee, J. Lee, I. Song, B. S. Lee, S. Kim, J. Sohn, C. Pak, G. Kim, S. G. Doo and K. Kwon, Int. J. Electrochem Sci., 2016, 11(11), 9295-9306.   DOI
9 P. H. Matter, L. Zhang and U. S. Ozkan, J. Catal., 2006, 239(1), 83-96.   DOI
10 H. Zhang, S. Hwang, M. Wang, Z. Feng, S. Karakalos, L. Luo, Z. Qiao, X. Xie, C. Wang, D. Su, Y. Shao and G. Wu, J. Am. Chem. Soc., 2017, 139(40), 14143-14149.   DOI
11 E. Rossinyol, J. Arbiol, F. Peiro, A. Cornet, J. R. Morante, B. Tian, T. Bo and D. Zhao, Sensors and Actuators B: Chem., 2005, 109(1), 57-63.   DOI
12 E. Luo, M. Xiao, Y. Wang, J. Ge, C. Liu and W. Xing, ChemCatChem, 2018, 10(17), 3653-3658.   DOI
13 L. Fan, P. Sun, L. Yang, Z. Xu and J. Han, Korean J. Chem. Eng., 2020, 37(1), 166-175.   DOI
14 H. Burri, R. Anjurn, R. B. Gurram, H. Mitta, S. Mutyala and M. Jonnalagadda, Korean J. Chem. Eng., 2019, 36(9), 1482-1488.   DOI
15 S. Wang, L. Lyu, G. Sima, Y. Cui, B. Li, X. Zhang and L. Gan, Korean J. Chem. Eng., 2019, 36(7), 1042-1050.   DOI
16 F. Kleitz, T. W. Kim and R. Ryoo, Bull. Korean Chem. Soc., 2005, 26(11), 1653-1668.   DOI
17 S.-Y. Chen, C.-Y. Tang, W.-T. Chuang, J.-J. Lee, Y.-L. Tsai, J. C. C. Chan, C.-Y. Lin, Y.-C. Liu and S. Cheng, Chem. Mater., 2008, 20(12), 3906-3916.   DOI
18 X. Jin, C. H. Lee, J. H. Kim, D. J. You, C. Pak, J. K. Shonand J. M. Kim, Bull. Korean Chem. Soc., 2015, 36(8), 2062-2067.   DOI
19 S. H. Joo, H. I. Lee, D. J. You, K. Kwon, J. H. Kim, Y. S. Choi, M. Kang, J. M. Kim, C. Pak, H. Chang and D. Seung, Carbon, 2008, 46(15), 2034-2045.   DOI
20 S. C. Ryu, J. H. Lee and H. Moon, Korean J. Chem. Eng., 2019, 36(9), 1410-1416.   DOI
21 J. K. Shon, H. S. Lee, G. O. Park, J. Yoon, E. Park, G. S. Park, S. S. Kong, M. Jin, J.-M. Choi, H. Chang, S. Doo, J. M. Kim, W.-S. Yoon, C. Pak, H. Kim and G. D. Stucky, Nature Commun., 2016, 7(1), 11049.   DOI
22 W. Cai, Q. Chen, H. Xuan, C. Li, H. yu, L. Cui, Z. Yu, S. Zhang and F. Qu, Korean J. Chem. Eng., 2019, 36(4), 513-521.   DOI
23 Y. He, H. Xu, S. Ma, P. Zhang, W. Huang and M. Kong, Mater. Lett., 2014, 131, 361-365.   DOI
24 S. Ghosh, W. D. Yong, E. M. Jin, S. R. Polaki, S. M. Jung and H. Jun, Korean J. Chem. Eng., 2019, 36(2), 312-320.   DOI
25 X.-D. Wang, Z.-X. Shen, T. Sang, X.-B. Cheng, M.-F. Li, L.-Y. Chen and Z.-S.Wang, J. Colloid Interface Sci., 2010, 341(1), 23-29.   DOI
26 J. Woo, Y. J. Sa, J. H. Kim, H. W. Lee, C. Pak and S. H. Joo, ChemElectroChem, 2018, 5(14), 1928-1936.   DOI
27 U. Byambasuren, Y. Jeon, D. Altansukh, Y. Ji and Y.-G. Shul, Korean J. Chem. Eng., 2016, 33(6), 1831-1836.   DOI
28 M. Kruk, M. Jaroniec, S. H. Joo and R. Ryoo, J. Phys. Chem. B, 2003, 107(10), 2205-2213.   DOI
29 D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and S. D. Stucky, Science, 1998, 279(5350), 548-552.   DOI
30 H. I. Lee, J. H. Kim, G. D. Stucky, Y. Shi, C. Pak and J. M. Kim, J. Mater. Chem., 2010, 20(39), 8483-8487.   DOI
31 J. M. Esparza, M. L. Ojeda, A. Campero, A. Dominguez, I. Kornhauser, F. Rojas, A. M. Vidales, R. H. Lopez and G. Zgrablich, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004, 241(1-3), 35-45.   DOI
32 R. Atchudan, J. Joo and A. Pandurangan, Mater. Res. Bull., 2013, 48(6), 2205-2212.   DOI
33 H. I. Lee, G. D. Stucky, J. H. Kim, C. Pak, H. Chang and J. M. Kim, Adv. Mater., 2011, 23(20), 2357-2361.   DOI
34 W. Guo, F. Kleitz, K. Cho and R. Ryoo, J. Mater. Chem., 2010, 20(38), 8257-8265.   DOI
35 C. Jo, K. Kim and R. Ryoo, Micropo. Mesopo. Mater., 2009, 124(1-3), 45-51.   DOI
36 D. H. Choi and R. Ryoo, J. Mater. Chem., 2010, 20(26), 5544-5550.   DOI
37 H. Chang, S. H. Joo and C. Pak, J. Mater. Chem., 2007, 17(30), 3078-3088.   DOI
38 S. H. Joo, C. Pak, D. J. You, S. A. Lee, H. I. Lee, J. M. Kim, H. Chang and D. Seung, Electrochim. Acta, 2006, 52(4), 1618-1626.   DOI
39 C. Pak, S. J. Lee, S. A. Lee and H. Chang, Korean J. Chem. Eng., 2005, 22(2), 214-218.   DOI
40 H. I. Lee, J. H. Kim, D. J. You, J. E. Lee, J. M. Kim, W.-S. Ahn, C. Pak, S. H. Joo, H. Chang and D. Seung, Adv. Mater., 2008, 20(4), 757-762.   DOI
41 Y. Feng, Q. Shao, Y. Ji, X. Cui, Y. Li, X. Zhu, X. Huang, Sci. Adv. 2018, 4(7), eaap8817.
42 N. Daems, T. Breugelmans, I. F. J. Vankelecom and P. P. Pescarmona, ChemElectroChem, 2018, 5(1), 119-128.   DOI
43 J. Y. Cheon, C. Ahn, D. J. You, C. Pak, S. H. Hur, J. Kim and S. H. Joo, J. Mater. Chem. A, 2013, 1(4), 1270-1283.   DOI
44 M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol and K. S. W. Sing, Pure Appl. Chem., 2015, 87(9-10), 1051-1069.   DOI
45 U. Byambasuren, Y. Jeon, D. Altansukh, Y. Ji and Y.-G. Shul, Carbon Lett., 2016, 17(1), 53-64.   DOI
46 N. Du, C. Wang, R. Long and Y. Xiong, Nano Res. 2017, 10(9), 3228−3237.   DOI
47 A. Zadick, L. Dubau, N. Sergent, G. Berthome, and M. Chatenet, ACS. Catal. 2015, 5(8), 4819-4824.   DOI
48 M. Li, F. Xu, H. Li and Y. Wang, Catal. Sci. Tech., 2016, 6(11), 3670-3693.   DOI
49 C. H. Choi, W. S. Choi, O. Kasian, A. K. Mechler, M. T. Sougrati, S. Bruller, K. Strickland, Q. Jia, S. Mukerjee, K. J. J. Mayrhofer and F. Jaouen, Angew. Chem. Int. Ed., 2017, 56(30), 8809-8812.   DOI
50 L.-B. Lv, S.-Z. Yang, W.-Y. Ke, H.-H. Wang, B. Zhang, P. Zhang, X.-H. Li, M. F. Chisholm and J.-S. Chen, ChemCatChem, 2018, 10(16), 3539-3545.   DOI
51 K. Mamtani, D. Jain, A. C. Co and U. S. Ozkan, Energy Fuels, 2017, 31(6), 6541-6547.   DOI
52 (b) L. Sui, W. An, C. K. Rhee, S. H. Hur, J. Electrochem. Sci. Technol., 2020, 11(1), 84-91.   DOI
53 Y. Qiao, P. Yuan, Y. Hu, J. Zhang, S. Mu, J. Zhou, H. Li, H. Xia, J. He and Q. Xu, Adv. Mater., 2018, 30(46), 1804504.   DOI
54 M. M. Hossen, K. Artyushkova, P. Atanassov and A. Serov, J. Power Sources, 2018, 375, 214-221.   DOI
55 S. Ganesan, N. Leonard and S. C. Barton, Phys. Chem. Chem. Phys., 2014, 16(10), 4576-4585.   DOI