• Title/Summary/Keyword: Catalysts

Search Result 2,491, Processing Time 0.042 seconds

Pt@Cu/C Core-Shell Catalysts for Hydrogen Production Through Catalytic Dehydrogenation of Decalin

  • Kang, Ji Yeon;Lee, Gihoon;Jeong, Yeojin;Na, Hyon Bin;Jung, Ji Chul
    • Korean Journal of Materials Research
    • /
    • v.26 no.1
    • /
    • pp.17-21
    • /
    • 2016
  • Pt@Cu/C core-shell catalysts were successfully prepared by impregnation of a carbon support with copper precursor, followed by transmetallation between platinum and copper. The Pt@Cu/C core-shell catalysts retained a core of copper with a platinum surface. The prepared catalysts were used for hydrogen production through catalytic dehydrogenation of decalin for eventual application to an onboard hydrogen supply system. Pt@Cu/C core-shell catalysts were more efficient at producing hydrogen via decalin dehydrogenation than Pt/C catalysts containing the same amount of platinum. Supported core-shell catalysts utilized platinum highly efficiently, and accordingly, are lower-cost than existing platinum catalysts. The combination of impregnation and transmetallation is a promising approach for preparation of Pt@Cu/C core-shell catalysts.

Heterogeneous Catalysts Fabricated by Atomic Layer Deposition

  • Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.128-128
    • /
    • 2013
  • Fabrication of heterogeneous catalysts using Atomic Layer Deposition (ALD) has recently been attracting attention of surface chemists and physicists. In this talk, I will present recent results about structures and chemical activities of various catalysts prepared by ALD, particularly focusing on Ni-based catalysts. Ni has been considered as potential catalysts for $CO_2$ reforming of methane (CRM); however, Ni often undergoes rapid decrease in catalytic activity with time, and therefore, application of Ni as catalysts for CRM has been regarded as difficult so far. Deactivation of Ni catalysts during CRM reaction is from either coke formation on Ni surface or sintering of Ni particles during reaction. Two different strategies have been used for enhancing stability of Ni-based catalysts; $TiO_2$ nanoparticles were deposited on micrometer-size Ni particles by ALD, which turned out to reduce coke formation on Ni surfaces. Ni nanoparticles deposited by ALD on mesoporous silica showed high activity and long-term stability from CRM without coke deposition and sintering during CRM reaction. Ni-based catalysts have been also used for oxidation of toluene, which is one of the most notorious gases responsible for sick-building syndrome. It was shown that onset-temperature of Ni catalysts for toluene oxidation is as low as $120^{\circ}C$. At $250\circ}C$, total oxidation of toluene to $CO_2$ with a 100% conversion was found.

  • PDF

A Study of Simultaneous Hydrodesulfurization and Hydrocracking Reactions over CoMo, NiMo/ZSM-5 Catalysts (CoMo, NiMo/ZSM-5 촉매상에서 동시적인 수첨탈황과 수소화 분해반응에 관한 연구)

  • 정우식;고을석;김경림
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.2
    • /
    • pp.140-146
    • /
    • 1993
  • CoMo, NiMo/ZSM-5 catalysts were prepared at Si/Al ratios of 100, 200 and characterized by TGA, XRD and SEM. Simultaneous hydrocracking of n-heptane and hydrodesulfurization of DBT were studied over these catalysts at the ranges of temparatures between 400$^\circ$C and 500$^\circ$C, pressure of 30 $\times 10^5$ Pa and contact time of 0.02g cat. hr/ml feed in a fixed bed flow reactor. It was shown that the hydrocracking activity of n-heptane increased in the order of NM 100, CM 100, NM 200 and CM 200 catalysts. It was also shown that the Hydrodesulfurization activity of DBT increased in the order of CM 200, NM 200, CM 100 and NM 100 catalysts and these results were thought to be that the increase of acidity of catalysts might increase hydrocracking activity of these catalysts but deactive those simultaneously. In this study it was shown that CM 100 and NM 200 were active catalysts in simultaneous hydrodesulfurization of DBT and hydrocracking of n-heptane reactions.

  • PDF

Synthesis of CuO-Magnetite and ZnO-Magnetite catalysts for $CO_2$ Decomposed Reaction (CO$_2$ 분해용 촉매 CuO-Magnetite 및 ZnO-Magnenetite 합성)

  • Yang, Chun-Mo;Rim, Byung-O
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.67-75
    • /
    • 1998
  • The Cuo-Magnetite and ZnO-Magnetite catalysts with various of Cuo and ZnO mole% for Carbon Dioxide decomposed reaction synthesized. The catalysts were reduced by $H_2$ at $350^{\circ}C$ for 3 hours. The temperature was obtained by TGA and DSC experiments. The structures of catalysts were confirmed by X-ray diffraction experiment. The surface area of catalysts is $15{\sim}27\;m^2/g$. The results of Carbon Dioxide decomposed ability was better $H_2-reduced$ magnetite catalysts with 0.03 mole% CuO and 0.03 mole% ZnO than others catalysts. After Carbon Dioxide decomposed reaction, catalysts were reacted $H_2$ and created only methane.

Nickel-Based Catalysts for Direct Borohydride/Hydrogen Peroxide Fuel Cell (직접 수소화붕소나트륨/과산화수소 연료전지를 위한 니켈 기반 촉매)

  • OH, TAEK HYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.6
    • /
    • pp.587-595
    • /
    • 2020
  • Nickel-based bimetallic catalysts were investigated for use in direct borohydride/hydrogen peroxide fuel cells. For anode and cathode, PdNi and AuNi catalysts were used, respectively. Nickel-based bimetallic catalysts have been investigated through various methods, such as inductively coupled plasma optical emission spectroscopy, transmission electron microscopy, scanning electron microscopy, and energy dispersive spectroscopy. The performance of the catalysts was evaluated through fuel cell tests. The maximum power density of the fuel cell with nickel-based bimetallic catalysts was found to be higher than that of the fuel cell with the monometallic catalysts. The nickel-based bimetallic catalysts also exhibited a stable performance up to 60 minutes.

The Effects of Agglomeration of Catalyst on its Activity in Partial Oxidation Reforming (부분산화개질 반응에서 촉매의 응집이 촉매 활성에 미치는 영향)

  • Lee, Sang-Ho;Yoon, Sang-Ho;Jeon, Seung-Hyun;Bae, Jong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.203-206
    • /
    • 2009
  • Agglomeration of catalysts is known as one of the major degradation mechanisms. Reforming of liquid fuel, which requires high temperature over $800^{\circ}C$, accelerates agglomeration of catalysts. In this work, The effects of agglomeration on catalysts activity in partial oxidation reforming conditions were investigated. Metal supported catalysts(Pt-CGO, Ru-CGO) were compared to perovskite-structured catalysts(NECS-P1, NECS-P2). High thermal stability of perovskite-structured catalysts was reported. Micro-reactor installed in electric furnace was used. its Temperature was raised from $800^{\circ}C$ to $1000^{\circ}C$ to accelerate agglomeration effect. To measure rate of agglomeration, BET analysis and CO pulse chemisorption were conducted on catalysts exposed to $1100^{\circ}C$. Metal supported catalysts showed degradation at $1000^{\circ}C$ and The rates were different according to metal supported. On the other hand perovskite-structured catalysts showed no degradation at $1000^{\circ}C$.

  • PDF

A Study on the Oxidation of CO and $C_3H_6$ over Noble Metal Supported Catalysts on Monolith (Monolith에 담지한 귀금속촉매상에서 CO와 $C_3H_6$의 동시적 산화반응에 관한 연구)

  • 김태원;고형림;김재형;김경림
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.1
    • /
    • pp.63-72
    • /
    • 1998
  • Simultaneous CO and $C_3H_6$ oxidation was carried out over noble metal supported monolith catalysts in a flow thorugh type reactor at the temperature ranging from room temperature to $500^\circ$C. Pt and Pd were selected as major active species, 10wt% of Ce was impregnated as an additive and alumina and silica were used as supports. The reactant gases were simulated and the reaction products were analyzed by on-line G.C.. EDX, SEM, TGA, XRD and optical microscope were used to analyze the characteristics of the prepared catalysts. Under the given conditions in this study, the catalysts supported on alumina showed better activity for CO oxidation, while Pd catalysts showed better activity for $C_3H_6$ oxidation. The improvement of conversion due to increase in thermal stability possibily by Ce addition was observed only for Pt catalysts.

  • PDF

Preparation and Electroactivities of Carbon Nanotubes-supported Metal Catalyst Electrodes Prepared by a Potential Cycling

  • Kim, Seok;Jung, Yong-Ju;Park, Soo-Jin
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.213-216
    • /
    • 2009
  • The electrochemical deposition of Pt nanoparticles on carbon nanotubes (CNTs) supports and their catalytic activities for methanol electro-oxidation were investigated. Pt catalysts of 4~12 nm average crystalline size were grown on supports by potential cycling methods. Electro-plating of 12 min time by potential cycling method was sufficient to obtain small crystalline size 4.5 nm particles, showing a good electrochemical activity. The catalysts' loading contents were enhanced by increasing the deposition time. The crystalline sizes and morphology of the Pt/support catalysts were evaluated using X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The electrochemical behaviors of the Pt/support catalysts were investigated according to their characteristic current-potential curves in a methanol solution. In the result, the electrochemical activity increased with increased plating time, reaching the maximum at 12 min, and then decreased. The enhanced electroactivity for catalysts was correlated to the crystalline size and dispersion state of the catalysts.

Review on Application Progress of Carbon-Based Catalysts in Environmental Governance

  • Zheng, Xizhe;Huang, Yuming;Du, Changming
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.4
    • /
    • pp.269-277
    • /
    • 2022
  • In recent years, carbon-based catalysts have become a research hotspot in environmental governance applications. Carbon-based catalysts have large surface areas, porous structures, multi-surface functional groups and excellent electron transfer capabilities, and can synergistically exhibit adsorption and catalytic performance. This article reviews the research progress of carbon-based catalysts in environmental governance, mainly including its application in wastewater treatment, exhaust gas purification and soil remediation. In view of the current difficulties in the research of carbon-based catalysts, the development prospects are proposed. We hope that this review will provide convenience for new entrants and researchers intending to employ carbon-based catalysts for the remediation of contaminated environment.

The Effects of Catalyst on the Hydrolysis and Polymerization of TEOS (Tetra Ethyl Ortho Silicate의 수화 및 중합에 미치는 촉매의 영향)

  • ;;S. Sakka
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.1
    • /
    • pp.86-90
    • /
    • 1990
  • The shape and characteristics of polymers in hydrolzed and polymerized sol were affected by the types of catalysts. In our research, the contents of water and catalysts were constant and the types of catalyst were varied. In the case of acid catalysts, polymers in sol were linear and spinnable. The shapes of polymer were affected by the types of anions in acid catalysts. In the case of catalyst having anions, F, Cl, in the same period, the effects were similar. But in the case of base catalysts polymers were rigid rod like and not spinnable.

  • PDF