Browse > Article
http://dx.doi.org/10.7316/KHNES.2020.31.6.587

Nickel-Based Catalysts for Direct Borohydride/Hydrogen Peroxide Fuel Cell  

OH, TAEK HYUN (Department of Mechanical Engineering, College of Mechatronics, Changwon National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.31, no.6, 2020 , pp. 587-595 More about this Journal
Abstract
Nickel-based bimetallic catalysts were investigated for use in direct borohydride/hydrogen peroxide fuel cells. For anode and cathode, PdNi and AuNi catalysts were used, respectively. Nickel-based bimetallic catalysts have been investigated through various methods, such as inductively coupled plasma optical emission spectroscopy, transmission electron microscopy, scanning electron microscopy, and energy dispersive spectroscopy. The performance of the catalysts was evaluated through fuel cell tests. The maximum power density of the fuel cell with nickel-based bimetallic catalysts was found to be higher than that of the fuel cell with the monometallic catalysts. The nickel-based bimetallic catalysts also exhibited a stable performance up to 60 minutes.
Keywords
Sodium borohydride; Hydrogen peroxide; Catalyst; Multiwalled carbon nanotubes; Direct borohydride/hydrogen peroxide fuel cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. O. Stroman, G. S. Jackson, Y. Garsany, and K. Swider-Lyons, "A calibrated hydrogen-peroxide direct-borohydride fuel cell model", J. Power Sources, Vol. 271, 2014, pp. 421-430, doi: https://doi.org/10.1016/j.jpowsour.2014.07.139.   DOI
2 B. Li, C. Song, X. Huang, K. Ye, K. Cheng, K. Zhu, J. Yan, D. Cao, and G. Wang, "A novel anode for direct borohydridehydroge peroxide fuel cell: Au nanoparticles decorated 3D self-supported reduced graphene oxide foam", ACS S ustain. Chem. Eng., Vol. 7, No. 13, 2019, pp. 11129-11137, doi: https://doi.org/10.1021/acssuschemeng.9b00192.   DOI
3 Z. Wang, J. Parrondo, C. He, S. Sankarasubramanian, and V. Ramani, "Efficient pH-gradient-enabled microscale bipolar interfaces in direct borohydride fuel cells", Nat. Energy, Vol. 4, 2019, pp. 281-289, doi: https://doi.org/10.1038/s41560-019-0330-5.   DOI
4 L. Gu, N. Luo, and G. H. Miley, "Cathode electrocatalyst selection and deposition for a direct borohydride/hydrogen peroxide fuel cell", J. Power Sources, Vol. 173, No. 1, 2007, pp. 77-85, doi: https://doi.org/10.1016/j.jpowsour.2007.05.005.   DOI
5 F. Pei, Y. Wang, X. Wang, P. He, Q. Chen, X. Wang, H. Wang, L. Yi, and J. Guo, "Performance of supported Au-Co alloy as the anode catalyst of direct borohydride-hydrogen peroxide fuel cell", Int. J. Hydrogen Energy, Vol. 35, No. 15, 2010, pp. 8136-8142, doi: https://doi.org/10.1016/j.ijhydene.2010.01.016.   DOI
6 B. Sljukic, J. Milikic, D. M. F. Santos, C. A. C. Sequeira, D. Maccio, and A. Saccone, "Electrocatalytic performance of Pt-Dy alloys for direct borohydride fuel cells", J. Power Sources, Vol. 272, 2014, pp. 335-343, doi: https://doi.org/10.1016/j.jpowsour.2014.08.080.   DOI
7 M. G. Hosseini, R. Mahmoodi, and M. S. Amjadi, "Carbon supported Ni1Pt1 nanocatalyst as superior electrocatalyst with increased power density in direct borohydride-hydrogen peroxide and investigation of cell impedance at different temperatures and discharging currents", Energy, Vol. 131, 2017, pp. 137-148, doi: https://doi.org/10.1016/j.energy.2017.05.034.   DOI
8 L. Yi, B. Yu, W. Yi, Y. Zhou, R. Ding, and X. Wang, "Carbon-supported bimetallic platinum-iron nanocatalysts: application in direct borohydride/hydrogen peroxide fuel cell", ACS Sustain. Chem. Eng., Vol. 6, No. 7, 2018, pp. 8142-8149, doi: https://doi.org/10.1021/acssuschemeng.7b04438.   DOI
9 B. Li, C. Song, D. Zhang, K. Ye, K. Cheng, K. Zhu, J. Yan, D. Cao, and G. Wang, "Novel self-supported reduced graphene oxide foam-based CoAu electrode: an original anode catalyst for electrooxidation of borohydride in borohydride fuel cell", Carbon, Vol. 152, 2019, pp. 77-88, doi: https://doi.org/10.1016/j.carbon.2019.06.018.   DOI
10 T. H. Oh, B. Jang, and S. Kwon, "Electrocatalysts supported on multiwalled carbon nanotubes for direct borohydride-hydrogen peroxide fuel cell", Int. J. Hydrogen Energy, Vol. 39, No. 13, 2014, pp. 6977-6986, doi: https://doi.org/10.1016/j.ijhydene.2014.02.117.   DOI
11 T. H. Oh, B. Jang, and S. Kwon, "Performance evaluation of direct borohydride-hydrogen peroxide fuel cells with electrocatalysts supported on multiwalled carbon nanotubes", Energy, Vol. 76, 2014, pp. 911-919, doi: https://doi.org/10.1016/j.energy.2014.09.002.   DOI
12 P. He, Y. Wang, X. Wang, F. Pei, H. Wang, L. Liu, and L. Yi, "Investigation of carbon supported Au-Ni bimetallic nanoparticles as electrocatalyst for direct borohydride fuel cell", J. Power Sources, Vol. 196, No. 3, 2011, pp. 1042-1047, doi: https://doi.org/10.1016/j.jpowsour.2010.08.037.   DOI
13 J. Wei, X. Wang, Y. Wang, J. Guo, P. He, S. Yang, N. Li, F. Pei, and Y. Wang, "Carbon-supported Au hollow nanospheres as anode catalysts for direct borohydride-hydrogen peroxide fuel cells", Energy Fuels, Vol. 23, No. 8, 2009, pp. 4037-4041, doi: https://doi.org/10.1021/ef900186m.   DOI
14 T. H. Oh, "Gold-based bimetallic electrocatalysts supported on multiwalled carbon nanotubes for direct borohydride-hydrogen peroxide fuel cell", Renew. Energy, Vol. 163, 2021, pp. 930-938, doi: https://doi.org/10.1016/j.renene.2020.09.028.   DOI
15 R. K. Raman, N. A. Choudhury, and A. K. Shukla, "A high output voltage direct borohydride fuel cell", Electrochem. Solid St., Vol. 7, No. 12, 2004, pp. A488-A491, doi: https://doi.org/10.1149/1.1817855.   DOI
16 C. P. Leon, F. C. Walsh, A. Rose, J. B. Lakeman, D. J. Browning, and R. W. Reeve, "A direct borohydride-acid peroxide fuel cell", J. Power Sources, Vol. 164, No. 2, 2007, pp. 441-448, doi: https://doi.org/10.1016/j.jpowsour.2006.10.069.   DOI
17 G. H. Miley, N. Luo, J. Mather, R. Burton, G. Hawkins, L. Gu, E. Byrd, R. Gimlin, P. J. Shrestha, G. Benavides, J. Laystrom, and D. Carroll, "Direct NaBH4/H2O2 fuel cells", J. Power Sources, Vol. 165, No. 2, 2007, pp. 509-516, doi: https://doi.org/10.1016/j.jpowsour.2006.10.062.   DOI