• 제목/요약/키워드: Catalyst Support

검색결과 365건 처리시간 0.028초

담체에 따른 Pt 촉매의 NOx, soot 동시 반응특성과 열충격에 관한 연구 (A Study of Simultaneous Reaction for NOx, Soot and Thermal Shock according to Pt Catalyst's Supports)

  • 김성수;박광희;배세현;홍성창
    • 공업화학
    • /
    • 제20권4호
    • /
    • pp.437-442
    • /
    • 2009
  • $TiO_2$, $Al_2O_3$를 담체로 한 Pt계 촉매에서 NOx, soot의 동시 제거 반응과 촉매의 열충격에 대한 연구를 수행하였다. 실험은 NOx와 soot의 반응을 독립 또는 동시에 반응시킨 조건으로 수행하였으며 그 결과 담체의 종류 및 상에 따라서 서로 상이한 NOx 제거능력과 soot 산화력을 나타내었고, soot의 산화시작온도의 결정은 NOx 제거능력과 상관관계가 있었다. NOx, soot의 동시 반응 시에는 생성된 $NO_2$에 의하여 soot 산화시작온도가 저온으로 이동하였다. 또한 열충격에 대한 NOx 제거율은 Pt/$Al_2O_3$ 촉매가 Pt/$TiO_2$ 촉매에 비하여 효율저하가 적게 일어났으며 soot 산화력은 활성점인 Pt의 소결현상에 의하여 촉매에 관계없이 모두 감소하였다.

Characteristics of Plasma Blacks Used as an Electrode of Direct Formic Acid Fuel Cell

  • Park, Young-Sook;Choi, Jong-Ho;Han, Jong-Hee;Lim, Tae-Hoon;Beak, Young-Soon;Ju, Jeh-Beck;Shon, Tae-Won;Lee, Joong-Kee
    • Carbon letters
    • /
    • 제6권1호
    • /
    • pp.41-46
    • /
    • 2005
  • Plasma carbon blacks of 20~30 nm diameter were synthesized by direct decomposition of natural gas using a hybrid plasma torch system with 50 kW direct current and 4 MHz of radio frequency. The insulating rector which inside diameter of 400 mm and length of 1500 mm, respectively was kept at 300~$400^{\circ}C$ during the preparation. The ultimate analysis of plasma carbon blacks reveals that the raw plasma carbon blacks contains a large quantity of volatile which is mainly consist of hydrogen. Therefore devolatilization of raw plasma carbon blacks were carried out at $900^{\circ}C$ for one hour under nitrogen atmosphere. The devolatilization leads to the decrease in electrical resistivity and surface oxygen functional groups of plasma carbon black significantly. In order to investigate the plasma carbon as a catalyst support, devolatilized plasma black at $900^{\circ}C$ (DPB) supported PtAu catalyst was synthesized by sodium boronhydride reduction method. Electrochemical measurements and direct formic acid fuel cell test indicated that catalytic activity of DPB supported PtAu catalyst for formic acid oxidation was similar to that of Vulcan XC-72 of commercial carbon black supported one.

  • PDF

고성능 메탄올 산화 반응을 위한 이산화 티타늄 복합화된 질소 도핑 탄소 지지체의 합성 (Synthesis of TiO2 Composited Nitrogen-doped Carbon Supports for High-Performance Methanol Oxidation Activity)

  • 조현기;안효진
    • 한국재료학회지
    • /
    • 제30권1호
    • /
    • pp.14-21
    • /
    • 2020
  • Carbon supports for dispersed platinum (Pt) electrocatalysts in direct methanol fuel cells (DMFCs) are being continuously developed to improve electrochemical performance and catalyst stability. However, carbon supports still require solutions to reduce costs and improve catalyst efficiency. In this study, we prepare well-dispersed Pt electrocatalysts by introducing titanium dioxide (TiO2) into biomass based nitrogen-doped carbon supports. In order to obtain optimized electrochemical performance, different amounts of TiO2 component are controlled by three types (Pt/TNC-2 wt%, Pt/TNC-4 wt%, and Pt/TNC-6 wt%). Especially, the anodic current density of Pt/TNC-4 wt% is 707.0 mA g-1pt, which is about 1.65 times higher than that of commercial Pt/C (429.1 mA g-1pt); Pt/TNC-4wt% also exhibits excellent catalytic stability, with a retention rate of 91 %. This novel support provides electrochemical performance improvement including several advantages of improved anodic current density and catalyst stability due to the well-dispersed Pt nanoparticles on the support by the introduction of TiO2 component and nitrogen doping in carbon. Therefore, Pt/TNC-4 wt% may be electrocatalyst a promising catalyst as an anode for high-performance DMFCs.

NaOH 활성화된 탄소나노섬유의 직접 메탄올 연료전지용 연료극 촉매의 담지체로서의 특성 고찰 (Characteristics of NaOH-Activated Carbon Nanofiber as a Support of the Anode Catalyst for Direct Methanol Fuel Cell)

  • 신정희;임성엽;김상경;백동현;이병록;정두환
    • Korean Chemical Engineering Research
    • /
    • 제49권6호
    • /
    • pp.769-774
    • /
    • 2011
  • NaOH 활성화법을 이용하여 다공성 탄소나노섬유(carbon nanofibers; 이하 CNF)를 온도 범위 700~$900^{\circ}C$에서 합성하였고, 상기 제조된 다공성 CNF를 담지체로 하여 직접메탄올 연료전지의 연료극용 촉매를 제조하고 평가하였다. NaOH 활성화에 의한 CNF 표면 특성의 변화를 비표면적 및 기공 크기 분포 자료를 통하여 조사하였고, 형상 및 구조의 변화를 전자현미경을 통하여 관찰하였다. 활성화 CNF에 담지된 촉매의 활성을 메탄올 산화 특성 및 단위전지를 통하여 평가하였다. 본 활성화 방법에 의한 기공의 형성과 이에 담지된 촉매의 활성과의 관계에 대한 고찰을 하였다.

Nano-structured Carbon Support for Pt/C Anode Catalyst in Direct Methanol Fuel Cell

  • Choi Jae-Sik;Kwon Heock-Hoi;Chung Won Seob;Lee Ho-In
    • 한국분말재료학회지
    • /
    • 제12권2호
    • /
    • pp.117-121
    • /
    • 2005
  • Platinum catalysts for the DMFC (Direct Methanol Fuel Cell) were impregnated on several carbon supports and their catalytic activities were evaluated with cyclic voltammograms of methanol electro-oxidation. To increase the activities of the Pt/C catalyst, carbon supports with high electric conductivity such as mesoporous carbon, carbon nanofiber, and carbon nanotube were employed. The Pt/e-CNF (etched carbon nanofiber) catalyst showed higher maximum current density of $70 mA cm^{-2}$ and lower on-set voltage of 0.54 V vs. NHE than the Pt/Vulcan XC-72 in methanol oxidation. Although the carbon named by CNT (carbon nanotube) series turned out to have larger BET surface area than the carbon named by CNF (carbon nanofiber) series, the Pt catalysts supported on the CNT series were less active than those on the CNF series due to their lower electric conductivity and lower availability of pores for Pt loading. Considering that the BET surface area and electric conductivity of the e-CNF were similar to those of the Vulcan XC-72, smaller Pt particle size of the Pt/e-CNF catalyst and stronger metal-support interaction were believed to be the main reason for its higher catalytic activity.

Ru-NiOx nanohybrids on TiO2 support prepared by impregnation-reduction method for efficient hydrogenation of lactose to lactitol

  • Mishra, Dinesh Kumar;Dabbawala, Aasif A.;Truong, Cong Chien;Alhassan, Saeed M.;Jegal, Jonggeon;Hwang, Jin Soo
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.325-334
    • /
    • 2018
  • Lactose is a reducing disaccharide consisting of two different monosaccharides such as galactose and glucose. The hydrogenation of lactose to lactitol is a formidable challenge because it is a complex process and several side products are formed. In this work, we synthesized Ru-Ni bimetallic nanohybrids as efficient catalysts for selective lactose hydrogenation to give selective lactitol. Ru-Ni bimetallic nanohybrids with $Ru-NiO_x$ (x = 1, 5, and 10 wt%) are prepared by impregnating Ru and Ni salts precursors with $TiO_2$ used as support material. Ru-Ni bimetallic nanohybrids (represented as $5Ru-5NiO/TiO_2$) catalyst is found to exhibit the remarkably high selectivity of lactitol (99.4%) and turnover frequency i.e. ($374h^{-1}$). In contrast, monometallic $Ru/TiO_2$ catalyst shows poor performance with ($TOF=251h^{-1}$). The detailed characterizations confirmed a strong interaction between Ru and NiO species, demonstrating a synergistic effect on the improvement on lactitol selectivity. The impregnation-reduction method for the preparation of bimetallic $Ru-NiO/TiO_2$ catalyst promoted Ru nanoparticles dispersed on NiO and intensified the interaction between Ru and NiO species. $Ru-NiO/TiO_2$ efficiently catalyzed the hydrogenation of lactose to lactitol with high yield/selectivity at almost complete conversion of lactose at $120^{\circ}C$ and 55 bar of hydrogen ($H_2$) pressure. Moreover, $Ru-NiO/TiO_2$ catalyst could also be easily recovered and reused up to four runs without notable change in original activity.

단일 수성가스 전이 반응용 Cu/CeO2 촉매 최적화: 수산화탄산세륨 전구체를 이용한 CeO2 제조 및 최적 Cu 담지량 선정 (Optimization of Cu/CeO2 Catalyst for Single Stage Water-Gas Shift Reaction: CeO2 Production Using Cerium Hydroxy Carbonate Precursor and Selection of Optimal Cu Loading)

  • 허유승;정창훈;박민주;김학민;강부민;정대운
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.455-463
    • /
    • 2021
  • In this study, CeO2 support is synthesized from cerium hydroxy carbonate prepared using precipitation/digestion method using KOH and K2CO3 as the precipitants. The Cu was impregnated to CeO2 support with the different loading (Cu loading=10-40 wt. %). The prepared Cu/CeO2 catalysts were applied to a single stage water gas shift (WGS) reaction. Among the prepared catalysts, the 20Cu/CeO2 catalyst contained 20 wt.% of Cu showed the highest CO conversion (Xco=68% at 400℃). This result was mainly due to a large amount of active sites. In addition, the activity of the 20 Cu/CeO2 catalyst was maintained without being deactivated for 100 hours because of the strong interaction between Cu and CeO2. Therefore, it was confirmed that 20 Cu/CeO2 is a suitable catalyst for a single WGS reaction.

분말형 MnOx와 V2O2/TiO2 촉매를 이용한 저온영역의 백필터 공정에서 질소산화물 제거 특성 (Characterization of NOx Reduction on Filter Bag Support System at Low Temperature using Powder Type MnOx and V2O2/TiO2 Catalysts)

  • 김병환;김정헌;강필선;유승관
    • 한국대기환경학회지
    • /
    • 제26권1호
    • /
    • pp.1-9
    • /
    • 2010
  • In this study, the selective catalytic reduction of $NO_x$ with ammonia was carried out in a filter bag support reactor. The experiments were performed by powder type $MnO_x$ and $V_2O_5$/$TiO_2$ catalyst at low temperature between 130 and $250^{\circ}C$. Also, the effect of $SO_2$ and $H_2O$ on the NO conversion was investigated under our test conditions. The powder type catalysts were analyzed by X-ray photoelectron spectrum (XPS), X-ray diffraction(XRD), scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA). It was observed that NO removal efficiency of the powder type $V_2O_5$/$TiO_2$ catalyst was 85% at low temperature($200^{\circ}C$) under presence of oxygen and that of $MnO_x$ was 50% at the same condition. The powder type $V_2O_5$/$TiO_2$ catalyst, in conclusion, was found to be available for SCR reaction in a filter bag support system.

담지된 납산화물 촉매상에서 메탄의 전환반응 (Methane Conversion over Supported Lead Oxide Catalysts)

  • 장종산;박상언
    • 대한화학회지
    • /
    • 제36권1호
    • /
    • pp.147-156
    • /
    • 1992
  • ${\alpha}-{\beta}-,{\gamma}$-알루미나 및 MgO를 담체로 사용하여 담지된 납산화물 촉매를 제조하였다. 담지된 납산화물 촉매상에서 메탄의 $C^{2+}$ 탄화수소로의 전환반응은 MgO 담지촉매에서 $C^{2+}$ 선택도가 최대로 얻어졌으며, ${\gamma}$-알루미나 담지 PbO 촉매에서는 $CO_2$ 선택도가 높았다. 그리고 ${\alpha}$-알루미나 담지촉매에서는 중간정도의 활성이 얻어졌으며, ${\beta}$-알루미나 담지촉매에서는 활성이 거의 나타나지 않았다. 이러한 반응특성은 촉매의 격자산소의 활성에 크게 의존하였으며, 또한 격자 산소의 활성은 담체와 산화물간의 상호작용과 담체의 성질에 영향받았다. 특히 MgO 담지 촉매에서는 X-선 회절분석에서 여타의 담체에서보다 PbO 산화물의 (002)면의 피크 세기가 (111)면의 세기에 비해 훨씬 크게 나타난 것으로 볼 때 메탄의 Oxidative Coupling 반응에서의 표면산화물-담체 상호작용(SOSI)의 한 예로 여겨졌다.

  • PDF