• Title/Summary/Keyword: Catalyst Support

Search Result 365, Processing Time 0.033 seconds

Highly Active Electrocatalyst based on Ultra-low Loading of Ruthenium Supported on Titanium Carbide for Alkaline Hydrogen Evolution Reaction

  • Junghwan, Kim;Sang-Mun, Jung;Kyu-Su, Kim;Sang-Hoon, You;Byung-Jo, Lee;Yong-Tae, Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.417-423
    • /
    • 2022
  • With the emerging importance of catalysts for water electrolysis, developing efficient and inexpensive electrocatalysts for water electrolysis plays a vital role in renewable hydrogen energy technology. In this study, a 1nm thickness of TiC-supported Ru catalyst for hydrogen evolution reaction (HER) has been successfully fabricated using an electron (E)-beam evaporator and thermal decomposition of gaseous CH4 in a furnace. The prepared Ru/TiC catalyst exhibited an outstanding performance for alkaline hydrogen evolution reaction with an overpotential of 55 mV at 10 mA cm-2. Furthermore, we demonstrated that the outstanding HER performance of Ru/TiC was attributed to the high surface area of the support and the metal-support interaction.

Synthesize multi-walled carbon nanotubes via catalytic chemical vapour deposition method on Fe-Ni bimetallic catalyst supported on kaolin

  • Aliyu, A;Abdulkareem, AS;Kovo, AS;Abubakre, OK;Tijani, JO;Kariim, I
    • Carbon letters
    • /
    • v.21
    • /
    • pp.33-50
    • /
    • 2017
  • In this study, Fe-Ni bimetallic catalyst supported on kaolin is prepared by a wet impregnation method. The effects of mass of kaolin support, pre-calcination time, pre-calcination temperature and stirring speed on catalyst yields are examined. Then, the optimal supported Fe-Ni catalyst is utilised to produce multi-walled carbon nanotubes (MWCNTs) using catalytic chemical vapour deposition (CCVD) method. The catalysts and MWCNTs prepared using the optimal conditions are characterized using high resolution transmission electron microscope (HRTEM), high-resolution scanning electron microscope (HRSEM), electron diffraction spectrometer (EDS), selected area electron diffraction (SAED), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), and X-ray diffraction (XRD). The XRD/EDS patterns of the prepared catalyst confirm the formation of a purely crystalline ternary oxide ($NiFe_2O_4$). The statistical analysis of the variance demonstrates that the combined effects of the reaction temperature and acetylene flow rate predominantly influenced the MWCNT yield. The $N_2$ adsorption (BET) and TGA analyses reveal high surface areas and thermally stable MWCNTs. The HRTEM/HRSEM micrographs confirm the formation of tangled MWCNTs with a particle size of less than 62 nm. The XRD patterns of the MWCNTs reveal the formation of a typical graphitized carbon. This study establishes the production of MWCNTs from a bi-metallic catalyst supported on kaolin.

Steam Reforming of Methane in a Solar Concentrated Receiver Reactor (집광된 태양열을 반응기에서의 메탄 수증기개질 연구)

  • Kim, Ki-Man;Nam, Woo-Seok;Han, Gui-Young;Seo, Tae-Beom;Kang, Yong-Heack
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.172-175
    • /
    • 2006
  • Steam reforming of methane using Xe-arc solar simulator was studied for converting solar radiation into energy foam that one can readily utilize. The Xe-arc lamp produce a spectrum similar to that of the sun. SiC ceramic foam, resist high temp.$(>900^{\circ}C)$, is used to catalytically active foam absorber, and to support of reforming catalyst. The catalyst on the surface of foam were directly irradiated with solar simulated xe-light in order to carry out the steam reforming of methane. The reactor was made of stainless steel and quartz window was located on a place of the xe-light irradiation and temperature was controlled using K-type thermocouple in contact with catalyst located inside the reactor. The result show that a possibility of solar reforming using catalytically active foam absorber is exist.

  • PDF

An Investigation on Combustion Characteristics of Hydrogen-Air Premixture in a Sub-millimeter Scale Catalytic Combustor using Infrared Thermography (적외선 열화성 온도 측정법을 이용하여 살펴본 서브밀리미터 스케일 촉매 연소기에서의 수소-공기 예혼합 가스의 촉매 연소 특성)

  • Choi, Won-Young;Kwon, Se-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.3
    • /
    • pp.17-24
    • /
    • 2005
  • A sub-millimeter scale catalytic combustor with a simple plate-shaped combustion chamber was fabricated. A porous ceramics support coated with platinum catalyst was placed in the chamber. The combustor has a gallium arsenide window on the top that is transparent to infrared ray. The temperature distribution in the combustion chamber was measured using infrared thermal imager while hydrogen-air premixture is steadily supplied to the combustor. The area where the catalytic reaction took place broaden for higher flow rate and lower equivalence ratio made activated area in the combustion chamber broaden. The amount of coated platinum catalyst did not affect the reaction. Stop of reaction, which is similar to flame quenching of conventional combustion, was investigated. Large content of heat generation and broad activated area are essential criteria to prevent stop of reaction that has a bad effect on the combustor performance.

  • PDF

Characterization of $TiO_2$ base catalyst for de-NOx (질소산화물 제거를 위한 $TiO_2$계 촉매 제조 및 특성 시험)

  • Kim, Tae-Hoon;Jo, Young-Min;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.379-385
    • /
    • 2011
  • One of main catalysts for De-NOx in SCR is a $V_2O_5/TiO_2$, and this work formulated powdery catalysts focusing ultimately on corrugate catalytic support. The prepared catalyst consisted of anatase $TiO_2$. Amount of the added vanadium oxide determined the viscosity of catalyst slurry, which is important for washcoat for a final corrugate type catalytic reactor. The test showed a proportional relation between adsorption amount of ammonia and specific surface area. De-NOx efficiency could be obtained up to 96.3 % at $400^{\circ}C$ with a spacial velocity of $4,000hr^{-1}$.

Study on the Characteristics of Nitrous Oxide Catalytic Decomposition (아산화질소 촉매 분해 특성 연구)

  • Yong, Sung-Ju;Park, Dae-Il;Kim, Tae-Gyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.58-61
    • /
    • 2009
  • The characteristics of nitrous oxide catalytic decomposition were studied to utilize the nitrous oxide as a propellant. The Ru and Pt were selected as nitrous oxide decomposition catalysts and loaded in the $Al_2O_3$ support using an impregnation method. The nitrous oxide conversions as a variation of GHSV and reaction temperature were measured in a tubular reactor. At the low GHSV and high temperature, the conversion was increased, and Ru/$Al_2O_3$ catalyst showed better performance than Pt/$Al_2O_3$ catalyst.

  • PDF

A Study of Combustion Reaction of Methane by Pd Catalyst - Effects of Support Size & Calcination Temperature - (팔라듐 촉매의 메탄의 연소반응에 관한 연구 -담체의 크기와 소성온도에 따른 효과-)

  • Lee Taeck Hong
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.3 s.24
    • /
    • pp.52-56
    • /
    • 2004
  • Pd catalyst have been used in hydrogenation, oxidation, and low temperature combustion reaction. Recently, it is candidated as a possible reagents in the partial oxidation of methanol reformers of the fuel cell. Pd catalysts, even though it is very precious and expensive, catalytic functioning is good, but it still need to be improved in the matter of durability and low catalytic activity after calcination. In this study, we synthesize the improved Pd catalyst and study their chemical functioning.

  • PDF

The Application of Perfluorinated Cation-exchange Membrane in the Catalytic Process (촉매공정에서 양이온 교환 분리막의 응용)

  • 변홍식
    • Membrane Journal
    • /
    • v.2 no.1
    • /
    • pp.49-58
    • /
    • 1992
  • Functionalized organic polymers have been used as supports for heterogenized homogeneous catalytic process[1]. Sprcific advantages of using these resins as support reagents have been reviewed[2-4]. These include: -ease of by-product separation from the main reaction product usuallyby simple filtration. -prevention of intermolecular reaction of reactive species or functional groups by simulating high dilution conditions[5]. -utility of the "fish-hook" principle in which a minor component in fished out of a large excess substrate by the insoluble polymer[6]. -the possibility of reusing recovered reagents as well as eliminating the use of volatile or noxious substances[7]. Catalysis by ion-exchange membranes is perhaps one of the latest examples of the use of a polymer-supported species. Conceptually, catalysts on membrane supports offer several possible advantages over traditional powder type systems. They are: (1) Membranes immobilize the catalyst, preventing agglomeration. (2) Filtration is unnecessary for the catalyst separation and so complete catalyst recovery is facilitated. (3) Catalytyic and separation processes can be combined, allowing membrane supported catalysts for the continous flow reactors. reactors.

  • PDF

Heterogeneous Catalysts for Hydrogen Generation Based on Ru-Incorporated Hydroxyapatite

  • Jaworski, Justyn Wayne;Kim, Dae-Hyun;Jung, Kyeong-Mun;Kim, So-Hue;Jeong, Jong-Ok;Jeon, Hyo-Sang;Min, Byoung-Koun;Kwon, Ki-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.319-319
    • /
    • 2011
  • Hydrolysis of sodium borohydride provides a safe and clean approach to hydrogen generation. Having the proper catalytic support for controlling this reaction is therefore a valuable technology. Here we demonstrate the capability of hydroxyapatite as a novel catalytic support material for hydrogen generation. Aside from being inexpensive and durable, we reveal that Ru ion exchange on the HAP surface provides a highly active support for sodium borohydride hydrolysis, exemplifying a high total turnover number of nearly 24,000 mol $H_2$/ mol Ru. Moreover, we observe that the RuHAP support exhibits a high catalytic lifetime of approximately one month upon repeated exposure to $NaBH_4$ solutions. In addition to examining surface area effects, we also identified the role of complex surface morphology in enhancing hydrolysis by the catalytic transition metal covered surface. Particularly, we found that a polycrystalline RuHAP catalytic support exhibits shorter induction times for the initial bubble formation as well as increased hydrogen generation rates as compared to a single crystal supports. The independent factor of a complex surface morphology is believed to provide enhanced sites for gas release during the initial stages of the reaction. By demonstrating the ability to shorten induction time and enhance catalytic activity through changes in surface morphology and Ru content, we find it feasible to further explore this catalyst support in the construction of a practical hydrogen generator.

  • PDF

Activating needle coke to develop anode catalyst for direct methanol fuel cell

  • Park, Young Hun;Im, Ui-Su;Lee, Byung-Rok;Peck, Dong-Hyun;Kim, Sang-Kyung;Rhee, Young Woo;Jung, Doo-Hwan
    • Carbon letters
    • /
    • v.20
    • /
    • pp.47-52
    • /
    • 2016
  • Physical and electrochemical qualities were analyzed after KOH activation of a direct methanol fuel cell using needle coke as anode supporter. The results of research on support loaded with platinum-ruthenium suggest that an activated KOH needle coke container has the lowest onset potential and the highest degree of catalyst activity among all commercial catalysts. Through an analysis of the CO stripping voltammetry, we found that KOH activated catalysis showed a 21% higher electrochemical active surface area (ECSA), with a value of 31.37 m2 /g, than the ECSA of deactivated catalyst (25.82 m2 /g). The latter figure was 15% higher than the value of one specific commercial catalyst (TEC86E86).