• Title/Summary/Keyword: Catalyst:

Search Result 5,339, Processing Time 0.028 seconds

Production of Hydrogen and Carbon Nanotubes from Catalytic Decomposition of Methane over Ni:Cu/Alumina Modified Supported Catalysts

  • Hussain, Tajammul;Mazhar, Mohammed;Iqbal, Sarwat;Gul, Sheraz;Hussain, Muzammil;Larachi, Faical
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.7
    • /
    • pp.1119-1126
    • /
    • 2007
  • Hydrogen gas and carbon nanotubes along with nanocarbon were produced from commercial natural gas using fixed bed catalyst reactor system. The maximum amount of carbon (491 g/g of catalyst) formation was achieved on 25% Ni, 3% Cu supported catalyst without formation of CO/CO2. Pure carbon nanotubes with length of 308 nm having balloon and horn type shapes were also formed at 673 K. Three sets of catalysts were prepared by varying the concentration of Ni in the first set, Cu concentration in the second set and doping with K in the third set to investigate the effect on stabilization of the catalyst and production of carbon nanotubes and hydrogen by copper and potassium doping. Particle size analysis revealed that most of the catalyst particles are in the range of 20-35 nm. All the catalysts were characterized using powder XRD, SEM/EDX, TPR, CHN, BET and CO-chemisorption. These studies indicate that surface geometry is modified electronically with the formation of different Ni, Cu and K phases, consequently, increasing the surface reactivity of the catalyst and in turn the Carbon nanotubes/H2 production. The addition of Cu and K enhances the catalyst dispersion with the increase in Ni loadings and maximum dispersion is achieved on 25% Ni: 3% Cu/Al catalyst. Clearly, the effect of particle size coupled with specific surface geometry on the production of hydrogen gas and carbon nanotubes prevails. Addition of K increases the catalyst stability with decrease in carbon formation, due to its interaction with Cu and Ni, masking Ni and Ni:Cu active sites.

A Study on DeNOx Characteristics of Corona/Catalyst Hybrid System (코로나/촉매 일체형 시스템의 탈질특성에 관한 연구)

  • Chang, Hong-Ki;Choi, Chang-Sik;Shin, Jung-Uk;Ji, Young-Yeon;Hong, Min-Sun;Chung, Yoon-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.699-707
    • /
    • 2007
  • This study was carried out to investigate the reaction characteristics of corona/catalyst hybrid $DeNO_x$ process. The experiments were performed by using the multi-staged pin-to-hole type corona reactor which is enable to control the pin-to-hole gap and to insert the catalyst. Also, used for this study, were catalysts which commercially used Pt, Pd and $TiO_2$, and oxygen and hydrocarbon ($C_2H_4$) as reagents. In the syn-gas test, at high temperatures in the range of $100{\sim}200^{\circ}C$, the corona-only $DeNO_x$ process did not reduce the $NO_x$ concentration effectively. However in the presence of ethylene and oxygen as reagents, the $NO_x$ removal efficiency was better at these high temperatures than corona-only $DeNO_x$ process. In addition, coronal catalyst hybrid process with $TiO_2$ showed more efficiency of $NO_x$ removal than Pt and Pd catalyst, because the $TiO_2$ catalyst was more active than Pt and Pd catalyst to converse the $NO_2$ to $HNO_3$. Furthermore, at the condition of real diesel exhaust gas, the $DeNO_x$ efficiency of corona/catalyst hybrid process was not good at higher reaction temperature and plasma density.

Hydrogen Production by Autothermal Reforming Reaction of Gasoline over Ni-based Catalysts and it Applications (Ni계 촉매상에서 가솔린의 자열 개질반응에 (Autothermal Reforming)의한 수소제조 및 응용)

  • Moon, Dong Ju;Ryu, Jong-Woo;Yoo, Kye Sang;Lee, Byung Gwon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.4
    • /
    • pp.274-282
    • /
    • 2004
  • This study focused on the development of high performance catalyst for autothermal reforming (ATR) of gasoline to produce hydrogen. The ATR was carried out over MgO/Al2O3 supported metal catalysts prepared under various experimental conditions. The catalysts before and after reaction were characterized by N2-physisorption, CO-chemisorption, SEM and XRD. The performance of supported multi-metal catalysts were better than that of supported mono-metal catalysts. Especially, it was observed that the conversion of iso-octane over prepared Ni/Fe/MgO/Al2O3 catalyst was 99.9 % comparable with commercial catalyst (ICI) and the selectivity of hydrogen over the prepared catalyst was 65% higher than ICI catalyst. Furthermore, it was identified that the sulfur tolerance of prepared catalyst was much better than ICI catalyst based on the ATR reaction of iso-octane containing sulfur of 100 ppm. Therefore, Ni/Fe/MgO/Al2O3 catalyst can be applied for a fuel reformer, hydrogen station and on-board reformer in furl cell powered vehicles.

Thermal Phenomena of an N2O Catalyst Bed for Hybrid Rockets Using a Porous Medium Approach (다공성 매질 접근법을 적용한 하이브리드 로켓 N2O 촉매 점화기의 열적 현상)

  • 유우준;김수종;김진곤;장석필
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.89-96
    • /
    • 2006
  • In this study, fluid flow and thermal characteristics in a catalyst bed for nitrous oxide catalytic decomposition which is introduced as a hybrid rocket ignition system for small satellites were theoretically considered. To analyze the thermal phenomena of the catalyst bed, a so-called porous medium approach has been opted for modeling the honeycomb geometry of the catalyst bed. Using a Brinkman-extended Darcy model for fluid flow and the one-equation model for heat transfer, the analytical solutions for both velocity and temperature distributions in the catalyst bed are obtained and compared with experimental data to validate the porous medium approach. Based on the analytical solutions, parameters of engineering importance are identified to be the porosity of the catalyst bed, effective volumetric ratio, the ratio of the radius of the catalyst bed to the radius of a pore, heat flux generated by a heater, and pumping power. Their effects on thermal phenomena of the catalyst bed are studied.

A Study on the Degradation Properties of Aqueous Trinitrotoluene by Palladium Catalyst and Formic Acid (Palladium 촉매와 포름산을 활용한 액상 trinitrotoluene 분해 특성 연구)

  • Jeong, Sangjo;Choi, Hyungjin;Park, Sangjin;Lee, Juneil
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.468-475
    • /
    • 2015
  • Various methods to degrade explosives efficiently in natural soil and water that include trinitrotoluene (TNT) have been studied. In this study, TNT in water was degraded by reduction with palladium (Pd) catalyst impregnated onto alumina (henceforth Pd-Al catalyst) and formic acid. The degradation of TNT was faster when the temperature of water was high, and the initial TNT concentration, pH, and ion concentration in water were low. The amounts of Pd-Al catalyst and formic acid were also important for TNT degradation in water. According to the experimental results, the degradation constant of TNT with unit mass of Pd-Al catalyst was $8.37min^{-1}g^{-1}$. The degradation constant of TNT was higher than the results of previous studies which used zero valent iron. 2,6-diamino-4-nitrotoluene and 2-amino-4,6-dinitrotoluene were detected as by-products of TNT degradation showing that TNT was reduced. The by-products of TNT were also completely degraded after reaction when both Pd-Al catalyst and formic acid existed. Even though there are several challenges of Pd-Al catalyst (e.g., deactivation, poisoning, leaching, etc.), the results of this study show that TNT degradation by Pd-Al catalyst and formic acid is a promising technique to remediate explosive contaminated water and soil.

Copolymerization of Ethylene and α-olefins with Embedded rac-Et[Ind]2ZrCl2 Catalyst (Embedded rac-Et[Ind]2ZrCl2 메탈로센 촉매를 이용한 Ethylene/α-olefin 공중합특성)

  • Shin, Dong Min;Chung, Jin Suk
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.137-141
    • /
    • 2008
  • Copolymerization of ethylene and ${\alpha}$-olefin using $rac-Et[Ind]_2ZrCl_2/MAO$ catalyst embedded onto polysty-rene was examined. The embedded catalyst was prepared by polymerizing a small amount of styrene with $rac-Et[Ind]_2ZrCl_2$. The catalytic activities of the embedded catalyst were higher than those of the homogeneous catalystregardless of comonomer type and the characteristic of the active sites of the embedded catalyst was not affected duringthe embedding process. Based on the DSC and NMR analyses of the produced copolymers, it was thought that theembedded catalyst had similar or slightly better comonomer incorporation ability. Furthermore, the copolymers produced by the embedded catalyst had higher bulk densities and better particle morphology than those by the homogeneous catalyst.

Comparision of Immobilized TiO2 Catalyst for Water Purification (정수처리용 TiO2 고정화 촉매 비교)

  • Jeon, En Ju;Kang, Sung Hwan;Kim, Byung Ug;Rim, Jay Myung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.3
    • /
    • pp.101-106
    • /
    • 1999
  • This research aims to compare immobilized catalysts prepared by various methods and determine suitable $TiO_2$ catalyst for water purification. Sol-gel method by Anderson and powder coation method by Tanaka ate famous in the methods to immobilize catalyst. Therefore, the $TiO_2$ catalyst for this research was prepared by sol-gel method and powder coating method. Its structure was tested by X-ray diffractometer (XRD), Scanning electron microseope (SEM). Durability of a catalyst-support couple in an solution was investigated. too. Experimental results were summarized as following; i) Optimum ratio of Ti : $H_2O$ : $H^+$ to obtain stable sol was 1 : 10 : 0.1 and the XRD patterns of $TiO_2$ film immobilized by sol-gel method which were fired at $700^{\circ}C$ showed that the catalyst had an anatase structure. ii) The particle size of $TiO_2$ prepared by sol-gel method was less than $5{\mu}$, but it was observed that coated side was not unifiom. iii) Sol-gel method was very effective to obtain $TiO_2$ catalyst of thin film, but spreadability and durability of a catalyst-support couple in a solution were than $TiO_2$ film immobilized by powder coating method. iv) The particle size of $TiO_2$ immobilized by powder coating method was a little larger than it prepared by sol-gel method, but spreadability and uniformity of $TiO_2$ film and durability of a catalyst-support couple in a solution were better than it immobilized by sol-gel method.

  • PDF

Advances of Isomerizing-hydrogenating Properties of CoMo Catalysts Supported on ASA-Al2O3

  • Avdeenko, E.A.;Nadeina, K.A.;Larina, T.V.;Pakharukova, V.P.;Gerasimov, E.Yu.;Prosvirin, I.P.;Gabrienko, A.A.;Vatutina, Yu.V.;Klimov, O.V.;Noskov, A.S.
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.5
    • /
    • pp.349-361
    • /
    • 2022
  • Because hydrotreating (HDT) of FCC gasoline is one of the important processes used to prepare such gasoline for blending, the development of a catalyst for this process is of great interest. Currently, the industrial HDT of FCC gasoline consists of two stages and the creation of a new catalyst for one-stage HDT will make this process more efficient. Recently, our group has developed the CoMo/Al2O3-ASA catalyst and studied the influence of Si/Al ratio on the target reactions of HDT process. Despite the high selectivity and activity, the catalyst with ASA is not applicable in industry because of its low strength. The present work moves forward to study the influence of the ASA content in the catalyst support and clarify the possibility to develop the catalyst that combines high activity and selectivity in HDT reactions with successful performance. Here we show that the CoMo catalyst with ASA/Al2O3 molar ratio 1/1 in the support is the best combination for FCC gasoline hydrotreatment due to exceptional properties of the catalyst composition.

Numerical Study on the Effect of Exhaust Flow Pattern under Real Running Condition on the Performance and Reliability of Closed-Coupled Catalyst (실 운전조건에서의 배기유동패턴이 근접장착 촉매변환기의 성능 및 신뢰성에 미치는 영향에 관한 수치적 연구)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.54-61
    • /
    • 2004
  • The engine-out flow is highly transient and hot, and may place tremendous thermal and inertial loads on a closed-coupled catalyst. Therefore, time-dependent and detailed flow and thermal field simulation may be crucial. The aim of this study is to develop combined chemical reaction and multi-dimensional fluid dynamic mathematical model and to study the effect of unsteady pulsating thermal and flow characteristics on thermal reliability of closed-coupled catalyst. The effect of cell density on the conversion performance under real running condition is also investigated. Unlike previous studies, the present study focuses on coupling between the problems of pulsating flow pattern and catalyst thermal response and conversion efficiency. The results are expressed in terms of temporal evolution of flow, pollutant and temperature distribution as well as transient characteristics of conversion efficiency. Fundamental understanding of the flow and thermal phenomena of closed-coupled catalyst under real running condition is presented. It is shown that instants of significantly low values of flow uniformity and conversion efficiency exist during exhaust blowdown and the temporal varaition of flow uniformity is very similar in pattern to one of conversion efficiency. It is also found that the location of hot spot in monolith is directly affected by transient flow pattern in closed-coupled catalyst.

Study of using Waste Industrial Catalyst for the Removal of Harmful Organic Compounds (유해 유기화합물의 제거를 위한 폐 산업용 촉매의 이용에 관한 연구)

  • Seo, Seong-Gyu;Kim, Sang-Chai
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.5
    • /
    • pp.663-670
    • /
    • 2004
  • The catalytic oxidation of benzene, toluene and xylene over a spent industrial catalyst (Pd-based) was investigated in a fixed bed flow reactor system. According to the priming condition, the properties of a spent Pd-based catalyst were characterized by XRD(X-ray diffraction). BET(Brunauer-Emmett-Teller) and ICP(Inductively coupled plasma). When air was used as a primer, optimum priming temperature was found to be 200$^{\circ}C$, and the catalytic activity decreased as the priming temperature increased. When a spent Pd-based catalyst primed with air at 200$^{\circ}C$ was re-treated with hydrogen at 200$^{\circ}C$, 300$^{\circ}C$ or 400$^{\circ}C$, respectively, the catalytic activity increased and thermal effect were negligible. $HNO_3$ aqueous solution priming resulted in slight decrease of the catalytic activity, with little effects on $HNO_3$ concentrations. The activity of a spent Pd-based catalyst with respect to VOC molecule was observed to follow sequence: xylene> toluene> benzene. Benzene. toluene and xylene could be removed to almost 100% by a spent Pd-based catalyst primed with hydrogen.