• Title/Summary/Keyword: Casting pattern

Search Result 173, Processing Time 0.022 seconds

Development of the Large-Capacity Mooring Fittings according to MEG4(Mooring Equipment Guideline 4) (MEG4(Mooring Equipment Guideline 4) 적용에 따른 대용량 무어링 피팅 개발)

  • Myung-Su Yi;Kwang-Cheol Seo;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.950-957
    • /
    • 2023
  • For safe mooring and towing between the ship and port, the equipment must be designed in accordance with the relevant international regulations. However, some small shipyards and engineering companies often do not fully comprehend the core contents. Therefore, the international regulations regarding towing and mooring equipment are reviewed and the bollard and chock are newly developed based on the Mooring Equipment Guideline 4 (MEG4) standards. A bollard is a mooring equipment used to fix a mooring rope to the hull. It has two columns and is mostly used in a figure eight pattern knots under the mooring condition. The chock, which is used to change the mooring rope direction coming into the ship from outside, is manufactured using a casting with curvature. The two mooring equipment are widely used in the stern, bow, and mid-side. Owing to the increase in the size of container vessels and LNG ships, the mooring rope load has increased and the safe working load of the mooring equipment must be revised. This study summarizes and examines the results of the allowable stress method obtained using finite element analysis modelling. To consider the mesh size effect, a reasonable criteria was suggested by referring the existing class guidance. Additionally, the safe working load was verified through nonlinear collapse analysis, and the elastic region against load increments was confirmed. Furthermore, the proposed evaluation method can be used to develop similar equipment in the near future.

Comparison on the Fracture Strength Depending on the Fiber Post and Core Build-up (섬유 강화 포스트와 코어 축성 방법에 따른 파절 강도에 관한 비교)

  • Lee, Ja-Hyoung;Shin, Sooyeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.3
    • /
    • pp.225-235
    • /
    • 2009
  • A common procedure of restoration of endodonticlly treated tooth with fiber-reinforced post is followed by core build-up after post cementation. However, this technique is complex and time-consuming. The aim of this study was to compare fracture strength of premolar, restored with various methods of core fabrications on fiber-reinforced posts and casting metal restoration. Forty five freshly extracted human mandibular premolars were obtained and devided into 5 groups acconding to the type of post and methods of core build-up. In Group A, D.T. $Light-post^{(R)}$ were cemented with $DUO-LINK^{TM}$ and then $LIGHT-CORE^{TM}$ was used for core restoration. In Group B, D.T. $Light-post^{(R)}$ and $DUO-LINK^{TM}$ were used for cementing in the postspace, and $DUO-LINK^{TM}$ was used again for core restoration. In Group C, $Light-post^{(R)}$ bonding and the core build-up were performed simultaneously by using $DUO-LINK^{TM}$. In Group D, $LuxaPost^{(R)}$ was bonded by using $LuxaCore^{(R)}-Dual$. Again, $LuxaCore^{(R)}-Dual$ was used for core restoration. In Group E, $LuxaPost^{(R)}$ bonding and the core build-up were performed simultaneously by using $LuxaCore^{(R)}-Dual$. Axial reduction was formed parallelly as possible and 45 degree bevel was made at buccal occlusal surface. Crowns were fabricated and cemented. Each tooth was embedded in self-curing acrylic resin to the level of 2mm below the CEJ. Specimens were fixed on universal testing machin such that the axis of the tooth was at 45 degree inclination to the horizontal plane, and compressive force was applied at a crosshead speed of 1mm/min until failure occurred. The mean fracture strength was the highest in group A followed by descending order in group B, D, E and C. However, there were no statistically significant differences between groups with regard to the fracture strength. The type of the post or build-up methods of the core does not seem to influence the fracture strength.

Effect of various abutment systems on the removal torque and the abutment settling in the conical connection implant systems (원추형 연결 임플란트에서 지대주 종류에 따른 나사풀림과 침하현상에 관한 연구)

  • Lee, Jin-Seon;Lee, Joon-Seok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.2
    • /
    • pp.92-98
    • /
    • 2012
  • Purpose: The aim of this study was to evaluate the effects of different abutment materials on abutment screw loosening and settling-down effect in conical connection type implant system. Materials and methods: Three types of abutment, cementation, gold UCLA, and metal UCLA abutment were used. Two UCLA groups were fabricated in a similar pattern to cementation abutment. Type III gold alloy and Nickel-Chromium alloy was used for casting gold UCLA abutment and metal UCLA abutment, respectively. Fixture and abutment were tightened to 30 Ncm by using digital torque controller and re-tightening was conducted with same force after 10 minutes. Digital torque gauge was used to measure loosening torque and fixture/abutment length was measured by digital micrometer. Dynamic loads between 25 N and 250 N were applied with $0^{\circ}$ angle to the abutment axis. After loading, fixture/abutment length was re-measured and amount of settlement was calculated. Loosening torque value was also measured for comparison Results: All three groups showed significant differences of length when comparing before and after loading, but there was no significant difference of settling amount in all groups. Loosening torque values were significantly decreased when comparing before and after loading in all groups($P$<.05). However, there was no significant difference in loss of loosening torque values when compared to groups. Conclusion: In internal conical connection type implants, dynamic load affected on settlement and loosening torque of implant, but there was no differences between abutments materials. Likewise gold UCLA abutment, metal UCLA abutment might be able to withstand functional load.