• Title/Summary/Keyword: Casting Mold

Search Result 465, Processing Time 0.023 seconds

On the Measurement of Residual Stresses in Aluminum Alloy Parts Fabricated by Precision Metal Mold Casting (정밀금형 알루미늄 합금 주물에서의 잔류응력 측정에 관한 연구)

  • Kim, Chae-Hwan;Mun, Su-Dong;Gang, Sin-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.2087-2095
    • /
    • 1999
  • One of the main causes of unwanted dimensional changes in precision metal mold casting parts is excessive and irregular residual stresses induced by temperature gradients and plastic deformation in the solidifying shell. Residual stresses can also cause stress cracking, and lower the fatigue life and fracture strength of the casting parts. In the present study, aluminum alloy casting system with metal mold equipped with electrical heating elements and water cooling units was designed and the casting specimens were produced to quantify the effects of different cooling conditions on the development of residual stresses. The layer removal method was used to measure the biaxial residual stresses in casting specimens produced from the experiments. The experimental results agreed with Tien-Richmond's theoretical model for thermal stress development for the solidifying metal plate.

A study on the design and manufacture of die casting mold of belt pulley for spray pump (분무용 펌프 구동 벨트풀리의 다이캐스팅 금형설계 및 제작에 관한 연구)

  • Lee, Eun-jong;Choi, Kye-kwang;Kim, Sei-hwan
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.23-27
    • /
    • 2013
  • Orchard sprayers, wide area dusters and multipurpose control cars are flagship products of Hansung T&I Ltd. Spray pumps are one of the essential parts for these products. But conventional belt pulleys for spray pumps are heavy and expensive, and they bring down the quality as well as productivity of the end-products. Therefore, this study focuses on mold design for aluminum die casting belt pulley and mold manufacture.

  • PDF

Fabrication of 3Y-TZP/SUS316 Functionally Graded Material by Slip Casting Method Using Alumina Mold (알루미나몰드를 사용한 슬립캐스팅법에 의한 3Y-TZP/SUS316계 경사기능재료의 제조)

  • 여정구;정연길;이세훈;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.70-78
    • /
    • 1997
  • 3Y-TZP/SUS316 Functionally Graded Material (FGM) was fabricated by slip casting method. Alumina mold was used to overcome problems of gypsum mold in slip casting process, and the optimal dispersion con-ditions of 3Y-TZP/SUS316 binary slurries was determined using electrokinetic sonic amplitude and a viscometer, and observing sedimentation behavior. The properties of the specimens casted by gypsum mold and alumina mold were compared in terms of changes in shrinkage rate, drying and sintering conditions, and microstructure. It was found that the specimens obtaine from the alumina mold showed a clean surface, easier thickness control of each layer, and higher productivity. Especially, no degradation was observed in the SUS316 prepared using alumina mold. Thus it is desirable to use porous alumina mold rather than gyp-sum mold for the slip casting of 3Y-TZP/SUS316-FGM.

  • PDF

Effects of Superheat and Coating Layer on Interfacial Heat Transfer Coefficient between Copper Mold and Aluminum Melt during Solidification (응고중 구리 주형과 알루미늄 용탕의 계면열전달계수에 미치는 용탕과열도와 도형재의 영향)

  • Kim, Hee-Soo;Shin, Je-Sik;Lee, Sang-Mok;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.24 no.5
    • /
    • pp.281-289
    • /
    • 2004
  • The present study focused on the estimation of the interfacial heat transfer coefficient as a function of the surface temperature of the aluminum casting at the mold/casting interface to investigate the effects of superheat and coating layer. The casting experiments of aluminum into a cylindrical copper mold were systematically conducted to obtain the thermal history during solidification. The thermal history recorded by four thermocouples embedded both in the mold and the casting was used to solve the inverse heat conduction problem using Beck's method. The effects of superheat and coating on the interfacial heat transfer coefficient in the liquid state, during the solidification, and in the solid state were comparatively discussed. In the liquid state, the interfacial heat transfer coefficient is thought to be affected by the roughness of the mold, the wettability of the casting on the mold surface, and the thermophysical properties of the coating layer. When the solidification begins, the air gap forms between the casting and the mold, and the interfacial heat transfer coefficient becomes a function of the air gap as well as surface roughness and the superheat. In the solid phase, it depends only upon the thermal conductivity and the thickness of the air gap. The coating layer reduces seriously the interfacial heat transfer coefficient in the liquid state and during the solidification.

Filling and Solidification Analysis for the Casting Process of Cylinder Liner (실린더 라이너 주조공정에 대한 충전 및 응고해석)

  • Kim, Jung-Hoon;Kim, Chang-Hee
    • Journal of Korea Foundry Society
    • /
    • v.24 no.4
    • /
    • pp.225-230
    • /
    • 2004
  • Computer simulation of mold filling and solidification has been performed in order to analyze the flow and solidification phenomena for the casting process of cylinder liner. The simulation result of mold filling shows that the molten metal flows into the mold in stable without scattering. The simulation results of solidification indicate that the last solidified area is located in the feeder. The temperature variation in casting is measured in actual casting and the result is compared with calculation result.

Thermal Analysis of Continuous Casting Welding-Coated Mold (용접코팅된 연속주조 몰드의 열해석)

  • 이종선;김세환
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.1
    • /
    • pp.7-12
    • /
    • 2001
  • This study is object to thermal analysis of continuous casting welding-coated mold. A two-dimen-sional transient finite element model was developed to compute the temperature distribution for continuous casting welding-coated mold. For thermal analysis using analysis result from FEM code. This thermal analysis results, many variables such as casting speed, cooling condition, film coefficient, convection and load condition are considered.

  • PDF

Production of Automobile Al Wheel by Low-Pressure Die Casting (I) : Flow and Solidification Simulation (저압주조에 의한 자동차 Al Wheel의 제조(I) : 유동 및 응고해석)

  • Choo, In-Ho;Yu, Sung-Kon;Choi, Jeong-Kil
    • Journal of Korea Foundry Society
    • /
    • v.18 no.6
    • /
    • pp.578-585
    • /
    • 1998
  • A multi-purpose code MAGMA was employed for mold design and process control in producing Al wheel by lowpressure die casting. Three-dimensional solid modeling was followed by mesh generation of casting and molds(top, bottom and side). The simulation of stability of casting cycle time, mold filling simulation with pressure variation from P1 to P2, solidification simulation by solidification time and feeding criteria, and temperature distribution of molds during processes were studied in this research. The thermal stability of molds was attained after 5 cycles when molds were preheated at $400^{\circ}C$. The pressure increase from P1 to P2 for mold filling was evaluated as slightly higher, and 6 seconds were taken for the mold filling. The cycle time was believed to be designed properly judged from the solidification time of casting and open/close time of molds.

  • PDF

Mechanical Properties and Mold Filling Capability of Al-Si-Mg Casting Alloy Fabricated by Lost Foam Casting Process (소실모형주조공정으로 제조한 Al-Si-Mg계 주조합금의 기계적 성질 및 주형 충전성)

  • Kim, Jeong-Min;Ha, Tae-Hyung;Choe, Kyeong-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.36 no.5
    • /
    • pp.153-158
    • /
    • 2016
  • The lost foam casting process was used to fabricate Al-Si-Mg cast specimens, and the effects of the chemical composition and process variables on the tensile properties and the mold filling ability were investigated. Some porosity formation was observed in thick sections of the casting and better tensile properties were obtained for thin sections, presumably because of their lower porosity and the higher cooling rate. Tensile properties were not clearly enhanced by grain refining treatment with Ti; however, the elongation was significantly improved by Sr modification of the Al-Si-Mg alloy. The mold filling distance was generally proportional to the pouring temperature of the melt, and the distance was also increased by the addition of Ti.

A Study on the Two-Dimensional Phase Change Problem in a Rectangular Mold with Air-Gap Resistance to Heat Flow (공기층 저항을 고려한 사각형 주형내에서의 2차원 상변화문제에 관한 연구)

  • 여문수;손병진;김우승
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1205-1215
    • /
    • 1992
  • The solidification rate is of special importance in determining the casting structures and properties. The heat transfer characteristics at the interface between the mold and the casting is one of the major factors that control the solidification rate. The thermal resistance exists due to the air-gap formation at the mold/casting interface during the freezing process. In this study two-dimensional Stefan problem with air-gap resistance in the rectangular mold is considered and the heat transfer characteristics is numerically examined by using the enthalpy method. The effects of the major parameters, such as mold geometry, thermal conductivity, heat transfer coefficient, and initial temperature of casting, on the thermal characteristics are investigated.

Development of an implicit filling algorithm (암시적 방법을 이용한 충전 알고리즘의 개발)

  • Im, Ik-Tae;Kim, U-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.104-112
    • /
    • 1998
  • The mold filling process has been a central issue in the development of numerical methods to solve the casting processes. A mold filling which is inherently transient free surface fluid flow, is important because the quality of casting highly depends on such phenomenon, Most of the existing numerical schemes to solve mold filling process have severe limitations in time step restrictions or Courant criteria since explicit time integration is used. Therefore, a large computation time is required to analyze casting processes. In this study, the well known SOLA-VOF method has been modified implicitly to simulate the mold filling process. Solutions to example filling problems show that the proposed method is more efficient in computation time than the original SOLA -VOF method.