• 제목/요약/키워드: Cast Element

검색결과 234건 처리시간 0.027초

R. E. M. 에 의한 벽식 PRE-CAST 구조물의 탄성해석 (Elastic Analysis of Pre-Cast Panel Structures By Rigid Element method)

  • 권택진;김승덕;김기철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.17-24
    • /
    • 1994
  • In the analysis pre-cast large panel structures, we can use the new discrete analyzing method to be consisted of rigid bodies. Because the pre-cast panels we still more rigid than the connection, the rigid element method is more efficient numerical method than F. E. M. The characteristics of R. E. M. is that strains in element are not occurred by external loadings and the deformation of the structures by external loadings is transmitted through springs around elements. In this study, we focus on the comparison of the results from the R. E. M. and the F. E. M. in order to establish the validity of the R. E. M. to analysis of pre-cast panel structures.

  • PDF

3.60wt%C-2.50wt%Si 구상흑연주철의 경화 및 오스템퍼링 처리시 기계적 성질에 미치는 합금 원소의 영향 (Effects of Alloying Elements on the Mechniacal Properties of Hardened and Austempered 3.60%C-2.50wt%Si Ductile Cast Irons)

  • 박정재;서갑성;권해욱
    • 한국주조공학회지
    • /
    • 제28권6호
    • /
    • pp.273-281
    • /
    • 2008
  • Effects of alloying elements on the mechanical properties of hardened and austempered 3.60wt%C - 2.50wt%C ductile cast iron were investigated. Strength and hardness were increased and ductility was decreased as the amount of alloying element increased. The increasing effect of copper addition on the strength was the most pronounced. The strength and hardness were greatly increased and ductility was decreased by hardening. The effect of alloying element on the mechanical properties of the hardened ductile cast iron was not so pronounced due to the high contents of C and Si. The strength and hardness of austempered ductile cast iron were greatly increased, meanwhile the difference of strength from that of hardened one was not so big. The ductility of the former was higher than that of the latter. The strength and ductility of austempered ductile cast iron with 0.25%Mn were the maximum of all Mn added ones. The maximum strength of that was obtained with the addition of 0.80wt%Cu or 2.00wt%Ni along with this amount of Mn added.

회주철에서의 폐 영구자석 스크랩을 활용한 희토류 원소 첨가 영향 연구 (A Study on Addition of Rare Earth Element in the Spent Permanent Magnet Scrap to Gray Cast Iron)

  • 박승연;노정현;김효중;임경묵
    • 자원리싸이클링
    • /
    • 제27권3호
    • /
    • pp.48-57
    • /
    • 2018
  • 본 연구에서는 폐 영구자석 스크랩에 함유된 희토류원소(Rare Earth Element, R.E.)를 첨가하여 고강도 회주철의 제조 방법을 검토하였다. 폐 영구자석 스크랩에 함유되어있는 희토류원소가 회주철의 응고 시 복합유화물 및 A형 흑연 형성을 촉진하여 조직 및 기계적 특성 향상에 효과적으로 작용한 것으로 나타났다. 폐 영구자석 스크랩을 접종제로 활용하여 주조 시 인장강도는 306 MPa의 우수한 특성으로 나타났으며, 고가의 희토류원소를 사용하여 접종한 실험의 인장강도와 비슷한 수준의 특성이다. 연구결과를 토대로 고특성의 회주철 제조에 있어서 폐 영구자석 스크랩을 활용한 R.E. 첨가가 효과적인 접종방안임을 확인하였다.

Numerical study of stress states near construction joint in two-plate-girder bridge with cast-in-place PC slab

  • Yamaguchi, Eiki;Fukushi, Fumio;Hirayama, Naoki;Kubo, Takemi;Kubo, Yoshinobu
    • Structural Engineering and Mechanics
    • /
    • 제19권2호
    • /
    • pp.173-184
    • /
    • 2005
  • For reducing construction cost, two-plate-girder bridges are getting popular in Japan. This type of bridge employs a PC slab, which is often cast-in-place. In such a case, concrete is not usually cast over the whole slab at one time: some portions are constructed earlier than the rest. Therefore, a construction joint is inevitably created. Due to the drying shrinkage of concrete, tension stress may occur in concrete slab. High tensile stress can be expected near the construction joint where concretes with different ages meet. Moreover, prestressing is not applied over the whole length of slab at one time. This may also serve as a source of tensile stress in the slab. Thus there is a chance that cast-in-place PC slab, especially near the construction joint, may be subjected to tensile cracking. In the present study, stress states near the construction joint in the cast-in-place PC slab of a two-plate-girder bridge are investigated numerically. The finite element method is employed and the three-dimensional analysis is conducted to see the influence of dry shrinkage and prestressing. The stress states in the PC slab thus obtained are discussed. The simplified model of a plate girder for this class of analysis is also proposed.

현장끼움벽으로 보강된 철근콘크리트 골조의 비선형 유한요소해석 (A Nonlinear Finite Element Analysis to Reinforced Concrete Frame Retrofitted with Cast-In Plate Infilled Shear Wall)

  • 한민기;이혜연;김선우;이갑원;최창식;윤현도
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.73-76
    • /
    • 2005
  • This paper discussed finite element method(FEM) models of the reinforced concrete frame retrofitted with cast-in plate infilled shear wall and analysed under constant axial and monotonic lateral load using ABAQUS. Detailed finite element models are created by studying the monotonic load response of the designed connection of reinforced concrete frame and cast-in plate infilled shear wall. The developed models account for the effect of material inelasticity, concrete cracking, geometric nonlinearity and bond-slip of steel, frame and infilled shear wall. In order to verify the proposed FEM, this study behaved analysis considered a diagonal reinforced steel. The analytical results compared with the experimental results.

  • PDF

지하수압 변화에 따른 심지층 핵폐기물 처분용기 내부 주철 구조물의 응력해석 (A Stress Analysis of the Cast Iron Insert of Spent Nuclear Fuel Disposal Canister with the Underground Water Pressure Variation in a Deep Repository)

  • 강신욱;권영주
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.77-84
    • /
    • 2000
  • In this paper, the stress analysis of the cast iron insert of spent nuclear fuel disposal canister in a deep repository at 500m underground is done for the underground pressure variation. Since the nuclear fuel disposal usually emits much heat and radiation, its careful treatment is required. And so a long term safe repository at a deep bedrock is used. Under this situation, the canister experiences some mechanical external loads such as hydrostatic pressue of underground water, swelling pressure of bentonite, sudden rock movement etc.. Hence, the canister should be designed to withstand these loads. The cast iron insert of the canister mainly supports these loads. Therefore, the stress analysis of the cast iron insert is done to determine the design variables such as the diameter versus length of canister and the number and array type of inner baskets in this paper, The linear static structural analysis is done using the finite element analysis method. And the finite element analysis code, NISA, is used for the computation.

  • PDF

쉘 적층 주조 구상흑연주철의 기계적 성질에 미치는 합금원소 및 열처리의 영향 (Effects of Alloying Element and Heat Treatment on the Mechanical Properties of Ductile Cast Iron Poured into Shell Stack Mold)

  • 김효민;권민영;천병철;권도영;김기엽;권해욱
    • 한국주조공학회지
    • /
    • 제40권3호
    • /
    • pp.76-84
    • /
    • 2020
  • The effects of Alloying Element and Heat Treatment on the mechanical properties of ductile cast iron poured into shell stack molds were investigated. The strength and hardness were increased and the elongation was decreased roughly with the increased amounts of tin and copper added, respectively. Those were greatly increased with the increased amount of tin added and the elongation was roughly decreased with it. In the simultaneous addition of copper and tin, the strength and hardness of the tin increased, but the elongation rate decreased. Those were greatly increased and this was decreased with normalizing. In the case of specimens with smaller section sizes during austempering processing, the strength and hardness were higher than those with larger sections, but the elongation rate was lower.

주조/단조 기술을 이용한 알루미늄 Lower Control Arm 제조에 관한 연구 (A Study on the Manufacture of Lower Control Arm by Casting/Forging Process)

  • 유민수;권오혁;배원병
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.139-142
    • /
    • 2003
  • In this study, casting/forging process was used to produce an aluminum lower control arm for automobiles. Firstly, casting experiments were carried out to get an enhanced preform for forging the lower control arm. In the casting experiment, the effect of an additive, Sr, on the mechanical properties such as tensile strength and elongation and the microstructure of a cast preform were investigated. And a finite element analysis was peformed to determine an optimal configuration of the cast preform. Lastly, a forging experiment was carried out to make the final product of aluminum lower control arm by using the above cast preform. In the casting experiments, when 0.025% Sr was added into molten A356, the maximum values of tensile strength and elongation of the cast preform were obtained. In the forging experiment, It was confirmed that the optimal configuration of a cast preform predicted by FE analysis was very useful. The cast/forged product using designed preform was made without any defects.

  • PDF

A Study on the Effects of Cu Addition for Strength in Cast Iron

  • Kim, S.Y.;Lee, H.C.;Huh, B.Y.
    • 한국주조공학회지
    • /
    • 제1권3호
    • /
    • pp.2-13
    • /
    • 1981
  • It was one of the most important studies in materials to obtain high strength in cant iron. Therefore, malleable cast iron and spheroidal graphite cast iron were developed. However, due to the large demand of gray cast iron, a study on the development for high strength in is very important. The author published a paper on the study on the effect of Al addition. In this study, the effect of Cu addition will be assessed on strength improvement in cast iron. Copper is known as the element of graphitization and pearlitization, so it is expected to obtain valuable results. The results obtained from this study are as follows ; 1. When copper was added to cast iron, tensile strength increased by 30%, and hardness increased by 13%. 2. The tensile strength showed a maximum when copper was added 1.0%.

  • PDF

구상흑연주철의 강인화에 미치는 특수열처리와 합금원소의 영향 (Effect of Special Heat Treatments and Alloying Element(Ni) on Strengthening and Toughening of Ductile Cast Iron)

  • 김석원;최용선
    • 한국주조공학회지
    • /
    • 제10권4호
    • /
    • pp.299-308
    • /
    • 1990
  • Ductile cast iron has a good ductility and ductility and toughness than those of gray cast iron, because the shape of graphite is spheroidal. It has been reported that the strengthening and toughening of the ductile cast iron was resulted from the good modification of various matrix structures obtained by the heat treatment or addition of alloying elements. This study aims to investigate the effect of various special heat treatment(Cyclic Heat Treatment, Intermediate Heat Treatment, Step Quenching), austempering and alloying element(Ni) on the strength and toughness of ductile cast iron. The results obtained from this study are summarized as follows. 1) With addition of Ni, the amount of pearlite or bainite were increased and the morphologies of pearlite or bainite became finer by special heat treatments. 2) As the Ni added and not added ductile cast iron were treated by austenitizing at $900^{\circ}C$ and $840^{\circ}C$, in the latter the austenite was mostly formed in the vicinity of eutectic cell boundary, but in the former on the whole matrix. 3) In cyclic heat treatment, the volume fraction of pearlite was increased and the shape of pearlite was fined with increase of the number of cycle. 4) The shape of pearlite was mostly bar type in the intermediate heat treatment, but spheroidal type in step quenching. 5) The mechanical properties of ductile cast iron containing 1.5%Ni austempered at $400^{\circ}C$ for 25min. after austenitizing at $900^{\circ}C$ for 15min. were a good value of hardness 105(HRB), impact energy 12.5(kg.m), tensile strength 112($kg/mm^2$) and elongation 6.8(%).

  • PDF