• Title/Summary/Keyword: Caspases

Search Result 226, Processing Time 0.03 seconds

Pseudolaric Acid B Induces Apoptosis Through p53 and Bax/Bcl-2 Pathways in Human Melanoma A375-S2 Cells

  • Gong Xian-Feng;Wang Min-Wei;Tashiro Shin-Ichi;Onodera Satoshi;Ikejima Takashi
    • Archives of Pharmacal Research
    • /
    • v.28 no.1
    • /
    • pp.68-72
    • /
    • 2005
  • Pseudolaric acid B is a major compound found in the bark of Pseudolarix kaempferi Gordon. In our study, pseudolaric acid B inhibited growth of human melanoma cells, A375-S2 in a time and dose-dependent manner. A375-S2 cells treated with pseudolaric acid B showed typical characteristics of apoptosis including morphologic changes, DNA fragmentation, sub-diploid peak in flow cytometry, cleavage of poly-ADP ribose polymerase (PARP) and degradation of inhibitor of caspase-activated DNase (ICAD). P53 protein expression was upregulated while cells were arrested at the $G_2/M$ phase of the cell cycle. There was a decrease in the expression of anti-apoptotic Bcl-2 and Bcl-xL proteins, whereas pro-apoptotic Bax was increased. The two classical caspase substrates, PARP and ICAD, were both decreased in a time-dependent manner, indicating the activation of downstream caspases.

Nuclear Factor-κB Activation: A Question of Life or Death

  • Shishodia, Shishir;Aggarwal, Bharat B.
    • BMB Reports
    • /
    • v.35 no.1
    • /
    • pp.28-40
    • /
    • 2002
  • Apoptosis is a mode of cell death that plays an important role in both pathological and physiological processes. Research during the last decade has delineated the entire machinery needed for cell death, and its constituents were found to pre-exist in cells. The apoptotic cascade is triggered when cells are exposed to an apoptotic stimulus. It has been known for several years that inhibitors of protein synthesis can potentiate apoptosis that is induced by cytokines and other inducers. Until 1996, it was not understood why protein synthesis inhibitors potentiate apoptosis. Then three reports appeared that suggested the role of the transcription factor NF-${\kappa}B$ activation in protecting the cells from TNF-induced apoptosis. Since then several proteins have been identified that are regulated by NF-${\kappa}B$ and are involved in cell survival, proliferation, and protection from apoptosis. It now seems that when a cell is attacked by an apoptotic stimulus, the cell responds first by activating anti-apoptotic mechanisms, which mayor may not be followed by apoptosis. Whether or not a cell undergoes proliferation, the survival, or apoptosis, appears to involve a balance between the two mechanisms. Inhibitors of protein synthesis seem to suppress the appearance of protein that are involved in anti-apoptosis. The present review discusses how NF-${\kappa}B$ controls apoptosis.

Green Tea (-) Epigallocatechin-gallate Induces the Apoptotic Death of Prostate Cancer Cells (녹차 (-)Epigallocatechin-gallate에 의한 전립선암 세포주 DU145 세포고사 기전)

  • 이지현;정원훈;박지선;신미경;손희숙;박래길
    • Toxicological Research
    • /
    • v.18 no.2
    • /
    • pp.183-190
    • /
    • 2002
  • The mechanism by which catechin-mediated cytotoxicity against tumor cells remains to be elusive. To elucidate the mechanical mights of anti-tumor effects, (-)epigallocatechin-gallate (EGCG) of catechin was applied to human prostate cancer DU 145 cells. Cell viability was measured by crystal violet staining. Cell lysates were wed to measure the catalytic activity of caspases by using fluorogenic peptide: Ac-DEVD-AMC for caspase-3 protease, Z-IETD-AFC for caspase-8 protease, Ac-LEHD-AFC for caspase-9 protease as substrates. The equal amounts of protein from cell lysate was separated on SDS-PAGE and analyzed by western blotting with anti-Fas antibody, anti-FasL antibody, anti-BCL2 antibody and anti-Bax antibody. (-)EGCG induced the death of DUl45 cells, which was revealed as apoptosis shown by DNA fragmentation. (-)EGCG induced the activation of caspase family cysteine proteases including caspase-3, -8 and -9 proteases in DU145 cells. Also, (-)EGCG increased the expression of Fas and Fas ligand (FasL) protein in DU145 colls. The expression level of BCL2 was decreased in (-)EGCG treated DU145 cells, whereas Bax protein was increased in a time-dependent manner. We suggest that (-)EGCG-induced apoptosis of DU145 cells is mediated by signaling pathway involving caspase family cysteine protease, mitochondrial BCL2-family protein and Fas/FasL.

Effects of Nelumbo nucifera Root Extract on Proliferation and Apoptosis in HT-29 Human Colon Cancer Cells (연근(Nelumbo nucifera Root) 추출물의 HT-29 인체 대장암세포 증식 억제 및 사멸 효과)

  • Guon, Tae-Eun;Chung, Ha Sook
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.24 no.1
    • /
    • pp.20-27
    • /
    • 2014
  • Our study is investigated the effects of Nelumbo nucifera root extract on HT-29 colon cancer cells. The anti-proliferative effect of 70% ethanol extract from Nelumbo nucifera root on HT-29 colon cancer cells was identified based on cell viability, Hoechst 33342 nuclear staining, apoptosis analysis, Western blotting and RT-PCR analyses. In our study, Nelumbo nucifera root extract inhibited the growth of HT-29 colon cancer cells in a dose-dependent manner. Concomitant activation of the mitochondria-dependent apoptotic pathway of HT-29 colon cancer cells by Nelumbo nucifera root extract occurred via modulation of Bax and Bcl-2 expressions, which activated cleavage of caspases-3 and -9. The findings of this study indicate that Nelumbo nucifera root extract induces apoptosis in HT-29 colon cancer cells, and this phenomenon is occurs via the death receptor-mediated and mitochondria-mediated apoptotic pathways.

Ethanol Extract of Saussurea lappa Root Induces Apoptosis through an ROS-MAPKs-Linked Cascade (목향에탄올추출물의 ROS-MAPKs 경로를 통한 세포사멸 유도)

  • Kim, Dae-Sung;Lee, Sung-Jin;Lee, Jang-Cheon;Woo, Won-Hong;Lim, Kyu-Sang;Mun, Yeun-Ja
    • YAKHAK HOEJI
    • /
    • v.56 no.3
    • /
    • pp.173-179
    • /
    • 2012
  • Saussurea lappa (SL) and major compounds, sesquiterpene lactones, have been suggested to possess various biological effects, including anti-tumor, anti-ulcer, anti-inflammatory, anti-viral and cardiotonic activities. Therefore, the ethanol extract of Saussurea lappa root (ESL) is studied for the mechanism of its action in apoptotic pathway. ESL-treated cells manifested nuclear condensation, and fragmentation. ESL also triggered the mitochondrial apoptotic pathway, as indicated by a change in Bax/Bcl2 ratio and caspase-9/-3 activation. ESL induced p38 MAPK/JNK, p53, and ASK1 phosphorylation. ROS scavenger reversed ESL-induced apoptotic cell death via inhibition of caspase-3 and p38 MAPK/JNK phosphorylation. These results suggest that ESL induced apoptosis in HepG2 cells through the ROS-p38/JNK pathway.

Inhibitory Effect of Lemon Oil on Apoptosis in Astrocytes (신경교(神經膠) 성상세포(星狀細胞)에서 레몬오일에 의한 세포자멸사(細胞自滅死)의 억제효과(抑制效果))

  • Kim, Jun-Han;Kim, Tae-Heon
    • Journal of Oriental Neuropsychiatry
    • /
    • v.11 no.1
    • /
    • pp.37-46
    • /
    • 2000
  • We investigated the effects of lemon pure essential oils on the heat shock-induced apoptosis in human astrocyte cell line CCF-STTG1. In previous studies, hear shock has been reported to induce the apoptosis or programmed cell death through the activation of caspase-3. Treatment of CCF-STTG1 cells with heat shock markedly induced apoptotic cell death as determined by flow cytometry. Interestingly, pretreatment of CCF-STTG1 cells with lemon pure essential oils inhibited the heat shock-induced apoptosis. Lemon also inhibited the heat shock-induced apoptosis in primary cultured rat astrocytes. To determine whether lemon inhibits the heat shock-induced activation of these apoptotic proteases, activation of CPP32 was assessed by Western blotting. Consistent with flow cytometry, DNA fragmentation and giemsa staining, heat shock-induced activation of CPP32 was blocked by lemon pure essential oil. PARP, cysteine protease substrates were fragmented as a consequence of apoptosis by heat shock. Lemon oil inhibited the PARP fragmentation. This essential oil also inhibited the heat shock-induced activation of caspase-3. These results suggest that lemon pure essential oils may modulate the apoptosis through the activation of the ICE-like caspases.

  • PDF

Momordica cochinchinensis Aril Extract Induced Apoptosis in Human MCF-7 Breast Cancer Cells

  • Petchsak, Phuchong;Sripanidkulchai, Bungorn
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.13
    • /
    • pp.5507-5513
    • /
    • 2015
  • Momordica cochinchinensis Spreng (MC) has been used in traditional medicine due to its high carotenoid content. The objective of this study was to investigate mechanisms underlying apoptotic effects of MC on human MCF-7 breast cancer cells. A lycopene-enriched aril extract of MC (AE) showed cytotoxicity and antiestrogenicity to MCF-7 cells. On DAPI staining, AE induced cell shrinkage and chromatin condensation were evident. With flow cytometric analysis, AE increased the percentage of cells in an early apoptosis stage when compared with the control group. RT-PCR analysis showed AE to significantly increase the expression of the proapoptotic bax gene without effect on expression of the anti-apoptotic bcl-2 gene. Moreover, AE enhanced caspase 6, 8 and 9 activity. Taken together, we conclude that AE of MC fruit has anticancer effects on human MCF-7 breast cancer cells by induction of cell apoptosis via both intrinsic and extrinsic pathways of signaling.

Potentiation of TRAIL killing activity by multimerization through isoleucine zipper hexamerization motif

  • Han, Ji Hye;Moon, Ae Ran;Chang, Jeong Hwan;Bae, Jeehyeon;Choi, Jin Myung;Lee, Sung Haeng;Kim, Tae-Hyoung
    • BMB Reports
    • /
    • v.49 no.5
    • /
    • pp.282-287
    • /
    • 2016
  • Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a homo-trimeric cytotoxic ligand. Several studies have demonstrated that incorporation of artificial trimerization motifs into the TRAIL protein leads to the enhancement of biological activity. Here, we show that linkage of the isoleucine zipper hexamerization motif to the N-terminus of TRAIL, referred as ILz(6):TRAIL, leads to multimerization of its trimeric form, which has higher cytotoxic activity compared to its native state. Size exclusion chromatography of ILz(6):TRAIL revealed possible existence of various forms such as trimeric, hexameric, and multimeric (possibly containing one-, two-, and multi-units of trimeric TRAIL, respectively). Increased number of multimerized ILz(6):TRAIL units corresponded with enhanced cytotoxic activity. Further, a high degree of ILz(6):TRAIL multimerization triggered rapid signaling events such as activation of caspases, tBid generation, and chromatin condensation. Taken together, these results indicate that multimerization of TRAIL significantly enhances its cytotoxic activity.

Effect of the Water Extract of Albizzia julibrissin on Cell Cycle Progression in the Human Leukemic Jurkat Cells (백혈병세포주 Jurkat의 세포주기 억제에 미치는 합환피(Albizzia julibrissin) 물 추출물의 효과)

  • Hwang, Sang-Gu;Lee, Hyung-Chul;Kim, Dae-Geun;An, Won-Gun;Jeon, Byung-Hun
    • Korean Journal of Pharmacognosy
    • /
    • v.33 no.1 s.128
    • /
    • pp.29-34
    • /
    • 2002
  • Albizzia julibrissin belonging to the family Leguminosae has been used for the treatment of contusion, sore throat, amnesia, and insomnia in Oriental traditional medicine. The water extract of A. julibrissin induced apoptosis in Jurkat T-acute lymphoblastic leukemia (ALL) cells as measured by cell morphology. The capability of this herb medicine to induce apoptosis was associated with proteolytic cleavage of specific target protein such as beta-catenin protein suggesting the possible involvement of caspases. The purpose of the present study is also to investigate the effect of A. julibrissin on cell cycle progression. Our results showed that GI checkpoint related gene products (cyclin D1, cyclin dependent kinase 4, retinoblastoma, E2F1) were decreased in their protein levels in a dose-dependent manners after treatment of the extract. These results indicate that the increase of apoptotic cell death by A. julibrissin may be due to the inhibition of cell cycle progression in wild type p53-lacking Jurkat cells.

Gentisyl Alcohol Inhibits Apoptosis by Suppressing Caspase Activity Induced by Etoposide

  • KIM JINHEE;KIM DONGHYUN;KIM MEEREE;KWON HOJEONG;OH TAEKWANG;LEE CHOONGHWAN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.532-536
    • /
    • 2005
  • In the course of our screening for small molecules to inhibit apoptosis of U937 human leukemia cells induced by etoposide ($10\;{\mu}g/ml$), Penicillium sp. F020150 with potent inhibitory activity was selected. The active compound was purified from ethyl acetate extract of the microorganism by Sephadex LH-20 column chromatography and HPLC, and was identified as gentisyl alcohol (2,5-dihydroxybenzyl alcohol) by spectroscopic methods. The compound inhibited caspase-3 induction with $IC_{50}$ value of $3.0\;{\mu}g/ml$ after 8 h of etoposide treatment. The expression levels of caspase-3 and PARP were dose-dependently inhibited by the compound, suggesting that gentisyl alcohol inhibits etoposide-induced apoptosis via downregulation of caspases.