• 제목/요약/키워드: Caspase-3 inhibitors

검색결과 90건 처리시간 0.025초

Establishment of a High-Throughput Screening System for Caspase-3 Inhibitors

  • Park, Seung-Yong;Park, Song-Hee;Lee, Il-Sun;Kong, Jae-Yang
    • Archives of Pharmacal Research
    • /
    • 제23권3호
    • /
    • pp.246-251
    • /
    • 2000
  • In most tissues, apoptosis plays a pivotal role in normal development and for regulating cell number, thus inappropriate apoptosis underlies a variety of diseases. Caspase-3 is one of a family of caspases that are mainly involved in the apoptotic signal transduction pathway, where caspase-3 acts as an effect molecule to proteolytically cleave intracellular substrates that are necessary for maintaining cell survival. Recent evidences show that apoptotic cell death can be blocked by inhibiting caspase-3, suggesting its inhibitors have potential to be therapeutic drugs for the diseases related with inappropriate apoptosis. We have established a screening system to search caspase-3 inhibitors from chemical libraries stocked in our institute. The enzyme assay is configured entirely in 96-well format, which is easily adapted for high throughput screening. Before performing mass screening, 80 in-house compounds were screened as a preliminary experiment, and we found that morin hydrate inhibited caspase-3 by 66.4 % at the final concentration of 20 ${\mu}g/m{\ell}$.

  • PDF

3D-QSAR of Non-peptidyl Caspase-3 Enzyme Inhibitors Using CoMFA and CoMSIA

  • Lee, Do-Young;Hyun, Kwan-Hoon;Park, Hyung-Yeon;Lee, Kyung- A.;Lee, Bon-Su;Kim, Chan-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권2호
    • /
    • pp.273-276
    • /
    • 2006
  • Three dimensional quantitative structure-activity relationship studies for a series of isatin derivatives as a nonpeptidyl caspase-3 enzyme inhibitor were investigated using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The first approach of non-peptidyl small molecules by 3D QSAR may be useful in guiding further development of potent caspase-3 inhibitors.

Design, Syntheses and Biological Evaluations of Nonpeptidic Caspase 3 Inhibitors

  • Kim, Eun-Sook;Yoo, Sung-Eun;Yi, Kyu-Yang;Lee, Sun-Kyung;Noh, Jae-Sung;Jung, Yong-Sam;Kim, Eun-Hee;Jeong, Nak-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권7호
    • /
    • pp.1003-1010
    • /
    • 2002
  • Caspase 3, a member of cysteine protease family, is well known as a major apoptosis effector and is involved in cell death as a result of ischemic diseases such as stroke and myocardial infarction, therefore the inhibition of caspase 3 may protect those apoptotic cell damages. During the high-throughput screening of the compounds from the Korea Chemical Bank, berberine derivatives (A and B), an isoquinoline alkaloid, have been identified as potential inhibitors for caspase 3. Based on this finding we carried out molecular modeling study to identify the pharmacophoric elements of berberine structure which interact with a substrate-recognition binding site of caspase 3 and came up with several novel scaffolds. In this report, we will discuss the molecular modeling, syntheses and the enzyme inhibitory activities of these novel compounds.

Comparative Molecular Field Analysis of Caspase-3 Inhibitors

  • Sathya, B.;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제7권3호
    • /
    • pp.166-172
    • /
    • 2014
  • Caspases, a family of cysteinyl aspartate-specific proteases plays a central role in the regulation and the execution of apoptotic cell death. Activation of caspases-3 stimulates a signaling pathway that ultimately leads to the death of the cell. Hence, caspase-3 has been proven to be an effective target for reducing the amount of cellular and tissue damage. In this work, comparative molecular field analysis (CoMFA) was performed on a series of 3, 4-dihydropyrimidoindolones derivatives which are inhibitors of caspase-3. The best predictions were obtained for CoMFA model ($q^2=0.676$, $r^2=0.990$). The predictive ability of test set ($r^2_{pred}$) was 0.688. Statistical parameters from the generated QSAR models indicated the data is well fitted and have high predictive ability. Our theoretical results could be useful to design novel and more potent caspase-3 derivatives.

Comparative Molecular Similarity Indices Analysis of Caspase-3 Inhibitors

  • Babu, Sathya;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제7권4호
    • /
    • pp.227-233
    • /
    • 2014
  • Caspases, a family of cysteinyl aspartate-specific proteases plays a central role in the regulation and the execution of apoptotic cell death. Activation of caspases-3 stimulates a signaling pathway that ultimately leads to the death of the cell. Hence, caspase-3 has been proven to be an effective target for reducing the amount of cellular and tissue damage. In this work, comparative molecular similarity indices analysis (CoMSIA) was performed on a series of 3,4-dihydropyrimidoindolones derivatives which are inhibitors of caspase-3. The best predictions were obtained for CoMSIA model ($q^2$ = 0.586, $r^2$ = 0.955). The predictive ability of test set ($r^2_{pred}$) was 0.723. Statistical parameters from the generated QSAR models indicated the data is well fitted and have high predictive ability. Our theoretical results could be useful to design novel and more potent caspase-3 derivatives.

Caspase3-like Death Protease Is Activated in CTLL2 Cells by Interleukin-2 Deprivation

  • Lee, Sang-Han;Kwon, O-Yu
    • Journal of Life Science
    • /
    • 제10권2호
    • /
    • pp.21-26
    • /
    • 2000
  • Cytokine deprivation-induced apoptosis can abrogate by the appropriate survival factors. Because the mechanism of Interleukin (IL)-2 deprived apoptotic cell death remains unclear, we here show the apoptosis in CTLL2 cells correlates with an increase of the activity of caspase3-like protease(s). Inhibition of caspase3-like protease(s) with caspase protease inhibitors (Z-VAD, Z-EVD, and Z-LPD) blocks typical apoptotic morphological abnormalities in CTLL2 cells. Interestingly, Bcl-{TEX}$X_{L}${/TEX} protein was decreased by IL-2 deprivation in the cells. These results suggest that caspase3-like protease(s), not caspase1, plays an important role in apoptosis execution of CTLL2 cell death.

  • PDF

Hologram Based QSAR Analysis of Caspase-3 Inhibitors

  • Sathya., B
    • 통합자연과학논문집
    • /
    • 제11권2호
    • /
    • pp.93-100
    • /
    • 2018
  • Caspases, a family of cysteinyl aspartate-specific proteases plays a central role in the regulation and the execution of apoptotic cell death. Caspase-3 has been proven to be an effective target for reducing the amount of cellular and tissue damage because the activation of caspases-3 stimulates a signalling pathway that ultimately leads to the death of the cell. In this study, Hologram based Quantitative Structure Activity Relationship (HQSAR) models was generated on a series of Caspase-3 inhibitors named 3, 4-dihydropyrimidoindolones derivatives. The best HQSAR model was obtained using atoms, bonds, and hydrogen atoms (A/B/H) as fragment distinction parameter using hologram length 61 and 3 components with fragment size of minimum 5 and maximum 8. Significant cross-validated correlation coefficient ($q^2=0.684$) and non cross-validated correlation coefficients ($r^2=0.754$) were obtained. The model was then used to evaluate the eight external test compounds and its $r^2_{pred}$ was found to be 0.559. Contribution map show that presence of pyrrolidine sulfonamide ring and its bulkier substituent's makes big contributions for improving the biological activities of the compounds.

Regulation of Caspase Activity During Apoptosis Induced by Baicalein in HL60 Human Leukemia Cell Line

  • Byun, Boo-Hyeong;Kim, Bu-Yeo
    • Food Science and Biotechnology
    • /
    • 제17권6호
    • /
    • pp.1305-1309
    • /
    • 2008
  • Baicalein, one of the major flavonoid in Scutellaria baicalensis, has been known for its effects on proliferation and apoptosis of many tumor cell lines. Most biological effects of baicalein are thought to be from its antioxidant and prooxidant activities. In this report, baicalein was found to induce apoptosis in HL60 human promyelocytic leukemia cell line. Baicalein treatment induced DNA fragmentation and typical morphological features of apoptosis. To elucidate the mechanism of baicalein-induced apoptosis, the activities of the members of caspase family were measured. Interestingly caspase 2, 3, and 6 were significantly activated whereas caspase 1, 8, and 9 were not activated, suggesting selective involvement of specific caspases. Further, treatment with caspase inhibitors also supports the involvement of caspase 2 in apoptosis process. Although it has been reported that baicalein can induce apoptosis through many caspase pathways, the present study indicates that caspase 2 not caspase 9 pathway may be the important step in apoptosis on HL60 cell line.

Effect of Lycii cortex radicis Extraction on Glioma Cell Viability

  • Kim, Seang-Jae;Jeong, Ji-Cheon
    • 대한한의학회지
    • /
    • 제30권6호
    • /
    • pp.17-26
    • /
    • 2009
  • Objectives: Little information is available regarding the effect of Lycii cortex radicis (LCR) on cell viability in glioma cells. This study was therefore undertaken to examine the effect of LCR on cell survival in U87MG human glioma cells. Methods: Cell viability and cell death were estimated by MTT assay and trypan blue exclusion assay, respectively. Reactive oxygen species (ROS) generation was measured using the fluorescence probe DCFH-DA. Activation of Akt and extracellular signal-regulated kinase (ERK) and activation of caspase-3 were estimated by Western blot analysis. Results: LCR resulted in apoptotic cell death in a dose- and time-dependent manner. LCR increased reactive oxygen species (ROS) generation and LCR-induced cell death was also prevented by antioxidants, suggesting that ROS generation played a critical role in LCR-induced cell death. Western blot analysis showed that LCR treatment caused down-regulation of Akt and ERK. The LCR-induced cell death was increased by the inhibitors of Akt and ERK. Activation of caspase-3 was stimulated by LCR and caspase inhibitors prevented the LCR-induced cell death. Conclusion: These findings suggest that LCR results in human glioma cell death through a mechanism involving ROS generation, down-regulation of Akt and ERK, and caspase activation.

  • PDF