• Title/Summary/Keyword: Caspase-10

Search Result 1,365, Processing Time 0.029 seconds

Induction of Apoptosis by Ethanol Extracts of Fermented Agabeans in AGS Human Gastric Carcinoma Cells (AGS 인체위암세포에서 발효된 아가콩 추출물에 의한 apoptosis 유도)

  • Kim, Sung-Ryeal;Lee, Hye-Hyeon;Kim, Min-Jeong;Seo, Min-Jeong;Hong, Su-Hyun;Choi, Yung-Hyun;Kang, Byoung-Won;Park, Jeong-Uck;Joo, Woo-Hong;Rhu, Eun-Ju;Jeong, Yong-Kee
    • Journal of Life Science
    • /
    • v.20 no.12
    • /
    • pp.1872-1881
    • /
    • 2010
  • Extracts of soybeans fermented by Bacillus subtilis have a wide variety of functions, such as enhancing the body's immune function, fibrinolysis activity, anti-inflammation, anti-cancer, estrogen function and anti-infection effects. Recently, it was reported that the extracts of fermented beans exhibit strong anti-inflammatory and anti-cancer properties by suppressing the transcription of pro-inflammatory cytokine genes and induction of apoptosis, respectively. However, the mechanisms of their cytotoxicity in human gastric cancer cells are poorly understood. In the present study, we investigated the effects of ethyl alcohol extracts from fermented soybean (FS) and yellow agabean (FYA) on cell growth and apoptosis in AGS human gastric cancer cells. A treatment of FS and FYA inhibited the growth of AGS cells in a concentration-dependent manner by inducing apoptosis. FS- and FYA-induced apoptosis were associated with down-regulation of XIAP and cIAP-2, and up-regulation of pro-apoptotic Bax expression. Moreover, a treatment of FS and FYA not only triggered an increase in the levels of death receptor (DR)4, DR5, Fas and FasL, but also induced the activation of casepase-3, -8 and -9. These findings illustrate that FS and FYA may have a therapeutic potential in human gastric AGS cells and as a functional food.

Effects of Platycodon grandiflorum on the Induction of Autophagy and Apoptosis in HCT-116 Human Colon Cancer Cells (길경 추출물에 의한 HCT-116 대장암 세포주에서의 autophagy와 apoptosis 유발 효과)

  • Hong, Su Hyun;Park, Cheol;Han, Min Ho;Kim, Hong Jae;Lee, Moon Hee;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.24 no.11
    • /
    • pp.1244-1251
    • /
    • 2014
  • Platycodon grandiflorum (PG) has been known to possess many biological effects, including anti-inflammatory and anti-allergy activity and anti-obesity and hyperlipidemia effects. However, little research has been conducted regarding its anticancer effects, with the exception of its ability to stimulate apoptosis in skin cells. There has also been no study regarding PG-induced autophagy. The modulation of autophagy is recognized as one of the hallmarks of cancer cells. Depending on the type of cancer and the context, autophagy can suppress or help cancer cells to overcome metabolic stress and the cytotoxicity of chemotherapy. Therefore, the present study was designed to investigate whether or not extracts from PG-induced cell death were connected with autophagy and apoptosis in HCT-116 human colon cancer cells. PG stimulation decreased cell proliferation in a dose- and time-dependent manner and induced apoptosis, which was partially dependent on the activation of caspases. PG treatment also resulted in the formation of autophagic vacuoles simultaneously with regulation of autophagy-related genes. Interestingly, a PG-mediated apoptotic effect was further triggered by pretreatment with the autophagy inhibitors 3-methyladenin and bafilomycin A1. However, cell viability recovered quite well with bafilomycin A1 treatment. These findings show that PG treatment promotes both autophagy and apoptosis and that PG-induced autophagic response might play a role in the autophagic cell death of HCT-116 cells.

Production of Nitric Oxide by Siegesbeckia Glabrescens is Associated with Apoptosis of Vascular Smooth Muscle Cell (희렴의 Nitric Oxide 유리를 통한 평활근세포에서의 Apoptosis유도)

  • Jun Soo Young;Shin Dong Hoon;Son Chang Woo;Shin Heung Mook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.4
    • /
    • pp.1055-1060
    • /
    • 2004
  • Apoptosis is the ability of cells to self-destruct by the activation of an intrinsic cellular suicide program when the cells are no longer needed or when they are seriously damaged. Morphologically, apoptosis is characterized by the appearance of membrane blebbing, cell shrinkage, chromatin condensation, DNA cleavage, and the fragmentation of the cell membrane-bound apoptotic bodies. Siegesbeckia glabrescens Makino (Siegesbeckiae Herba, SG) has been widely used as treatments for arthritis, and fever, as well as detoxification properties. The present studies were undertaken to evaluate if SG has an anti-apoptotic property. Cell viability was measured by XTT and tryphan blue stain. Morphological characteristic of human aortic smooth muscle cells(HASMC) were visualized with a phase-contrast microscope. SG significantly reduced HASMC, but not human umbilical vein endothelial cell(HUVEC), viability in a dose-dependent manner. Confluent untreated cells at 24hrs showed normal morphology, flat with a uniform polygonal shape. SG-treated cells (0.5㎎/㎖) at 24hrs showed apoptotic morphology. Cells became irregular with elongated lamellipodia, and exhibited condensed chromatin in nuclei with occasional endoucleation. There was an increase in the number of apoptotic cells rounding-up and being detached from the substrate. TUNEL staining of SG-treated cells showed dark-brown stains in nuclei and cytosol. Caspases are central components of the machinery responsible for apoptosis and are generally divided into two categories; the initiator caspases, which include caspases-2,-8,-9, and -10, and the effector caspases, which include caspases-3,-6, and -7. SG decreased anti-caspase-3 protein expression, which means activation of caspases-3 activity. It has been reported that there is a link between NO formation and apoptosis. NO production was accelerated by SG treatment in HASMC. L-NNA, NOS inhibitor, inhibited SG-induced apoptosis. These results, therefore, indicated that both caspases-3 and NO production are involved in apoptosis in smooth muscle cells. According to these results, SG may have a potential effect in the treatment of hypertensive atherosclerosis.

Effect of corosolic acid on apoptosis and angiogenesis in MDA-MB-231 human breast cancer cells (Corosolic acid의 유방암세포 증식 및 전이에 미치는 영향)

  • Son, Kun Ho;Hwang, Jin-hyeon;Kim, Dong-ha;Cho, Young-Eun
    • Journal of Nutrition and Health
    • /
    • v.53 no.2
    • /
    • pp.111-120
    • /
    • 2020
  • Purpose: Corosolic acid (CA), also known as 2α-hydroxyursolic acid, is present in numerous plants, and is reported to exhibit anti-cancer and anti-proliferative activities in various cancer cells such as osteosarcoma, hepatocellular carcinoma, lung adenocarcinoma, and colon cancer. However, the anti-cancer activity of CA on human breast cancer cells and the underlying mechanisms remain to be elucidated. The present study aimed to investigate the anticancer effects of CA in the human breast cancer cell line, MDA-MB-231. Methods: Cell viability, reactive oxygen species (ROS) production, apoptosis marker protein expression, migration, invasion rate, and vascular endothelial growth factor (VEGF) levels were assessed by treating MDA-MB-231 cells to increasing concentrations of CA. Results: The results showed that CA significantly inhibited the cell proliferation of MDA-MB-231 cells in a dose-dependent manner. To assess the effect of CA on apoptosis, nuclei of MDA-MB-231 cells were stained with DAPI solution. Chromatin condensation, which indicates apoptosis, was observed to increase dose-dependently. In addition, western-blot analysis revealed elevated levels of the apoptosis marker proteins (Bax and cleaved caspase 3) subsequent to MDA-MB-231 exposure to CA. ROS production was also increased in the CA-induced apoptosis in MDA-MB-231 treated cells. Interestingly, CA exposure resulted in significantly decreased migration and invasion rates in the MDA-MB-231 cells. Data further revealed that exposure to CA markedly decreased the VEGF concentration, thereby contributing to a reduction in angiogenesis. Conclusion: Our results determined that exposure to CA induces anti-proliferation, apoptosis, and ROS production, and suppresses cell migration and invasion rate in MDA-MB-231 cells. Taken together, these results indicate the potential of CA to be applied as an effective chemotherapeutic agent for treating breast cancer.

A Review on Experimental Research about Anticancer Drug Combined Treatment with Herbal Medicine for Killing or Inhibiting Proliferation of Cancer cells in Korea. (항암제와 한약재의 병용투여 시 암세포 증식억제 효과에 대한 국내 실험연구 문헌고찰)

  • Lee, Ji Eun;Choi, Jin Yong;Han, Chang Woo;Choi, Jun Yong;Park, Seong Ha;Kim, So Yeon
    • Herbal Formula Science
    • /
    • v.25 no.3
    • /
    • pp.391-412
    • /
    • 2017
  • Objective : In this study, we searched the experimental research about combined treatment of anticancer drug and herbal medicine for killing or inhibiting proliferation of Cancer cells searched in OASIS and KISS. This study aimed to analyze the experimental research paper about anticancer drug combined treatment with herbal medicine. Methods : We collected the research paper including killing or inhibiting proliferation of Cancer cells in OASIS and KISS using keyword anticancer drug with herbal medicine, tumor suppressor with herbal medicine, inhibition of Cancer with herbal medicine and combined treatment with herbal medicine. Assorting by cancer cells, we analyzed experimental results cancer cell viability, anticancer drug dosage, tumor weight and survival rate. Also, we checked the effects of herbal medicine on cancer and additive effect reducing side effect of anticancer drug. Results : Total 45 studies were selected. 38 studies reported combined treatment of anticancer drug and herbal medicine was more effective than only anticancer drug. The death of cancer cells was synergistically induced by the cotreatment of anticancer drug and herb extracts. The studies suggest that the cotreatment of anticancer drug and herb extracts could reduce side effect of anticancer drug. In addition, some studies reported cotreatment mechanism like apoptotic death signal processes. In combined treatment of anticancer drug and herb extracts, The expression of Fas/Fas L, Bax, Bcl2, Caspase-3 etc.. was markedly increased in cancer cells. Conclusions : Our results suggest that anticancer drug combined treatment with herbal medicine could be efficient for killing or inhibiting proliferation of cancer cells. However, this paper had some limitation as follows: First, collected studies have been published only for korean journal. Second, results of research and effects of combined treatment are not collected objectively. To solve these problems, more objective and balanced studies should be performed.

Epstein-Barr Virus-infected Akata Cells Are Sensitive to Histone Deacetylase Inhibitor TSA-provoked Apoptosis

  • Kook, Sung-Ho;Son, Young-Ok;Han, Seong-Kyu;Lee, Hyung-Soon;Kim, Beom-Tae;Jang, Yong-Suk;Choi, Ki-Choon;Lee, Keun-Soo;Kim, So-Soon;Lim, Ji-Young;Jeon, Young-Mi;Kim, Jong-Ghee;Lee, Jeong-Chae
    • BMB Reports
    • /
    • v.38 no.6
    • /
    • pp.755-762
    • /
    • 2005
  • Epstein-Barr virus (EBV) infects more than 90% of the world's population and has a potential oncogenic nature. A histone deacetylase (HDAC) inhibitor, trichostatin A (TSA), has shown potential ability in cancer chemoprevention and treatment, but its effect on EBV-infected Akata cells has not been examined. This study investigated the effect of TSA on the proliferation and apoptosis of the cells. TSA inhibited cell growth and induced cytotoxicity in the EBV infected Akata cells. TSA treatment sensitively induced apoptosis in the cell, which was demonstrated by the increased number of positively stained cells in the TUNEL assay, the migration of many cells to the sub-$G_0/G_1$ phase in flow cytometric analysis, and the ladder formation of genomic DNA. Western blot analysis showed that caspase-dependent pathways are involved in the TSA-induced apoptosis of EBV-infected Akata cells. Overall, this study shows that EBV-infected B lymphomas are quite sensitive to TSA-provoked apoptosis.

Kanakugiol, a Compound Isolated from Lindera erythrocarpa, Promotes Cell Death by Inducing Mitotic Catastrophe after Cell Cycle Arrest

  • Lee, Jintak;Chun, Hyun-Woo;Pham, Thu-Huyen;Yoon, Jae-Hwan;Lee, Jiyon;Choi, Myoung-Kwon;Ryu, Hyung-Won;Oh, Sei-Ryang;Oh, Jaewook;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.279-286
    • /
    • 2020
  • A novel compound named 'kanakugiol' was recently isolated from Lindera erythrocarpa and showed free radical-scavenging and antifungal activities. However, the details of the anti-cancer effect of kanakugiol on breast cancer cells remain unclear. We investigated the effect of kanakugiol on the growth of MCF-7 human breast cancer cells. Kanakugiol affected cell cycle progression, and decreased cell viability in MCF-7 cells in a dose-dependent manner. It also enhanced PARP cleavage (50 kDa), whereas DNA laddering was not induced. FACS analysis with annexin V-FITC/PI staining showed necrosis induction in kanakugiol-treated cells. Caspase-9 cleavage was also induced. Expression of death receptors was not altered. However, Bcl-2 expression was suppressed, and mitochondrial membrane potential collapsed, indicating limited apoptosis induction by kanakugiol. Immunofluorescence analysis using α-tubulin staining revealed mitotic exit without cytokinesis (4N cells with two nuclei) due to kanakugiol treatment, suggesting that mitotic catastrophe may have been induced via microtubule destabilization. Furthermore, cell cycle analysis results also indicated mitotic catastrophe after cell cycle arrest in MCF-7 cells due to kanakugiol treatment. These findings suggest that kanakugiol inhibits cell proliferation and promotes cell death by inducing mitotic catastrophe after cell cycle arrest. Thus, kanakugiol shows potential for use as a drug in the treatment of human breast cancer.

The Effect of Porcine Sperm Cytosolic Factor (SCF) on In Vitro Development of Porcine PA and NT Embryos

  • Shim, Joo-Hyun;Kim, Dong-Hoon;Ko, Yeoung-Gyu;Hwang, Seong-Soo;Oh, Keon-Bong;Yang, Boh-Suk;Jin, Dong-Il;Park, Jin-Ki;Im, Gi-Sun
    • Reproductive and Developmental Biology
    • /
    • v.35 no.3
    • /
    • pp.319-327
    • /
    • 2011
  • This study investigated whether the addition of porcine sperm cytosolic factor (SCF) at fusion/activation affects in vitro development of porcine parthenogenetic(PA) and nuclear transfer (NT) embryos. To determine the optimum concentration of SCF, control group of oocytes was activated with 0.3M mannitol (1.0 mM $CaCl_2{\cdot}2H_2O$), other three groups of oocytes were parthenogentically activated with the fusion medium (0.1mM $CaCl_2{\cdot}2H_2O$) supplemented with 100, 200 or 300 ${\mu}$g/ml SCF, respectively. Matured oocytes were activated with two electric pulses (DC) of 1.2 kv/cm for 30 ${\mu}$sec. The activated embryos were cultured in PZM-3 under 5% $CO_2$ in air at $38.5^{\circ}C$ for 6 days. Oocytes activated in the presence of SCF showed a significantly higher blastocyst rate than control (p<0.05). Apoptosis rate was significantly lower in 100 ${\mu}$g/ml SCF group than other groups (p<0.05). Cdc2 kinase activity in control and SCF treatment group of oocytes was determined using MESACUP cdc2 kinase assay kit at 1, 5, 10, 15, 30, 45 and 60 min after activation. Cdc2 kinase activity was significantly decreased (p<0.05) in SCF group than MII oocytes or control within 5 min. For NT embryo production, reconstructed oocytes were fused in the fusion medium supplemented with 0.1 mM $CaCl_2{\cdot}2H_2O$ (T1), 1.0 mM $CaCl_2{\cdot}2H_2O$ (T2) and 0.1 mM $CaCl_2{\cdot}2H_2O$ with 100 ${\mu}$g/ml SCF (T3). Fused embryos were cultured in PZM-3 under 5% $CO_2$ in air at $38.5^{\circ}C$ for 6 days. Developmental rate to blastocyst stage was significantly higher in T3 than other groups (23.0% vs. 13.5 to 15.2%) (p<0.05). Apoptosis rate was significantly lower in T3 than T1 or T2 (p<0.05). The relative abundance of Bax-${\alpha}$/Bcl-xl was significantly lower in in vivo or SCF group than that of control (p<0.05). Moreover, the expression of p53 and caspase3 mRNA was significantly lower in in vivo or SCF group than that of control (p<0.05). These results indicate that the addition of SCF at fusion/activation might improve in vitro development of porcine NT embryos through regulating cdc2 kinase level and expression of apoptosis related genes.

Anti-cancer Effect of Marine Resources Against Human Colorectal Cancer Cells (해양생물 추출물의 대장암세포주에 대한 항암 작용 검색)

  • Jung, Joohee
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.1
    • /
    • pp.70-74
    • /
    • 2017
  • Recently, the area of marine resources has become concerned with sources for the next generation of the bio-industry. Until present, development of the marine resources has remained limited, although a large number of these resources are considered to have potential for various significant biological activities. Most marine sponges, marine algae and coral could be used to create specific compounds for survival against a harsh environment. Therefore, it was necessary that these materials needed to be elucidated with biological activities, such as like anti-inflammatory, anti-viral or anti-cancer effects for their utilization in the bio-industry. In this study, we screened extracts of marine resources for their anti-cancer effect on human colorectal cancer cells. These resources were collected at Kosrae of Micronesia on April, 2013 and extracted with methanol. Cytotoxicity of marine resources was observed. Of a total of 20 specimens, three specimens dose-dependently demonstration inhibition of cell viability. Furthermore, cells treated with these specimens for 48h were induced p53, p21, Bax and caspase-3. The results suggest that they involved p53-mediated apoptosis. Two positive specimens (1304KO-327 and 1304KO-329) were verified as the identical materials, which are Hyrtios sp. Unfortunately 1304KO-207 was not yet classified and needed to identify in the further study. There results suggested that marine resources with positive potential in anticancer effect would be good candidates as useful bio-resources.

Antiproliferative Effect and Apoptotic Induction of Bauhinia forficata Extract in Human Cancer Cells. (Bauhinia forficata 추출물의 인체 암세포에 대한 성장억제 및 세포사멸 유도 활성)

  • 임혜영;이철훈
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.1
    • /
    • pp.67-71
    • /
    • 2004
  • Pata de Vaca (Bauhinia forficata) Is a tree which grows naturally in the rainforests and tropical parts of Peru and Brazil, as well as tropical zones of Asia, eastern Paraguay and northeastern Argentina. The active fraction (Pata-50) of the 70% ethanol extract from Pata de Vaca was sequentially fractionated by HP-20 Diaion column chromatography and C-18 column chromatography, and its characteristics were investigated. The growth of all cancer cells tested except for MCF-7 was Inhibited in a concentration-dependent manner by Pata-50. Its $IC_{50}$ values were estimated to be 40.4 $\mu\textrm{g}$/$m\ell$ on AGS, 51.3 $\mu\textrm{g}$/$m\ell$ on HT-29, 52.1$\mu\textrm{g}$/$m\ell$ on HepG2, 65.2$\mu\textrm{g}$/$m\ell$ on A549, and 77.5$\mu\textrm{g}$/$m\ell$ on HeLa cells. A flow cytometric analysis of HepG2 cells revealed induction of apoptosis, but cell cycle regulation was not affected. The HepG2 cell population of apoptosis region increased In a concentration-dependent manner by Pata-50.