• 제목/요약/키워드: Caspase-1

검색결과 1,277건 처리시간 0.029초

Salmonella Promotes ASC Oligomerization-dependent Caspase-1 Activation

  • Hwang, Inhwa;Park, Sangjun;Hong, Sujeong;Kim, Eun-Hee;Yu, Je-Wook
    • IMMUNE NETWORK
    • /
    • 제12권6호
    • /
    • pp.284-290
    • /
    • 2012
  • Innate immune cells sense and respond to the cytoplasmic infection of bacterial pathogens through NLRP3, NLRC4 or AIM2 inflammasome depending on the unique molecular pattern of invading pathogens. The infection of flagellin- or type III secretion system (T3SS)-containing Gram-negative bacteria such as Salmonella enterica serovar Typhimurium (S. typhimurium) or Pseudomonas aeruginosa (P. aeruginosa) triggers NLRC4-dependent caspase-1 activation leading to the secretion of proinflammatory cytokines such as interleukin-1-beta (IL-$1{\beta}$) and IL-18. Previous studies have shown that apoptosis-associated speck-like protein containing a CARD (ASC) is also required for Salmonella-induced caspase-1 activation, but it is still unclear how ASC contributes to the activation of NLRC4 inflammasome in response to S. typhimurium infection. In this study, we demonstrate that S. typhimurium triggers the formation of ASC oligomer in a potassium depletion-independent manner as determined by in vitro crosslinking and in situ fluorescence imaging. Remarkably, inhibition of potassium efflux failed to block Salmonella-promoted caspase-1 activation and macrophage cell death. These results collectively suggest that ASC is substantially oligomerized to facilitate the activation of caspase-1 in response to S. typhimurium infection. Contrary to NLRP3 inflammasome, intracellular potassium depletion is not critical for NLRC4 inflammasome signaling by S. typhimurium.

시안산에 의한 신경아교종세포의 자멸사 (Cyanate Induces Apoptosis of Rat Glioma Cell Line)

  • 최혜정;이상희
    • 생명과학회지
    • /
    • 제27권3호
    • /
    • pp.267-274
    • /
    • 2017
  • 본 연구는 말기 신부전 환자의 체내에서 증가되는 시안산이 신경학적 합병증의 원인으로 작용하는지 알아보고자 시안산 처리에 따른 신경아교종 세포인 C6 세포의 변화를 관찰하였다. 또한, 시안산에 의해 발현되는 세포자멸사 관련 인자를 알아보기 위하여 western blot 및 유전자 발현의 변화를 검색하기 위하여 cDNA 유전자 미세배열분석을 하였다. 시안산의 처리 농도가 0, 1, 5, 10, 20, 40 mM 증가할수록 신경아교종 세포의 생존율이 유의하게 감소하였고 세포자멸사에 주된 역할을 하는 caspase-8는 증가되었고 procaspase-3는 감소하였다. 그러나 caspase-8에 의해 활성화되는 Bax 단백질은 시안산의 처리 농도가 증가할수록 caspase-8의 증가에도 감소하였고, 세포자멸사를 조절하는 단백질인 Bcl-2와 IAP은 명확히 확인할 수 없었다. cDNA 유전자 미세배열 분석 결과, 총 1,099 종의 유전자 중에서 934 개의 유전자가 감소하였고 증가된 것은 165 개였다. 세포자멸사 관련 유전자에서도 감소한 것은 16 개였고, 증가된 6 개 유전자 가운데 heat shock 70 kD protein 1A가 현저한 증가를 나타내었다. 이상의 결과로 보아, 시안산은 신경아교종 세포에서 caspase-8 및 caspase-3와 관련된 세포자멸사를 유발시키며, 신경아교종 세포의 유전자들의 발현을 감소시키는 것으로 생각된다. 따라서 체내에서 증가된 시안산이 신경아교종 세포에 영향을 미쳐 말기 신부전 환자의 뇌병증에도 영향을 주는 것이라 생각된다.

Apoptotic Signaling Cascade of 5-aminolaevulinic Acid-based Photodynamic Therapy in Human Promyelocytic Leukemia HL-60 Cells

  • Nagao, Tomokazu;Matsuzaki, Kazuki;Takahashi, Miho;Minamitani, Haruyuki
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.509-511
    • /
    • 2002
  • In this study, we investigated apoptotic cell death induced by photodynamic therapy using 5-aminolaevulinic acid (ALA-PDT) in human promyelocytic leukemia cells (HL-60). ALA-PDT induced apoptosis in HL-60 cells as confirmed by DNA agarose gel electrophoresis and nuclear staining with Hoechst 33342. The apoptotic cell death was inhibited by addition of broad-spectrum caspase inhibitor Z-Asp-CH$_2$-DCB, indicating that the apoptotic cell death was induced in a caspase-dependent manner. Actually, western blotting analysis revealed that caspase-3 was processed as early as 1.5 h after ALA-PDT. Cytoplasmic cytochrome c released from mitochondria was detected by western blotting. However, inhibitor of caspase-9, a cysteine protease located in the downstream of cytochrome c release, was not able to reduce the apoptotic cell death. Therefore, the mitochondrial apoptotic pathway was not involved in the ALA-PDT-induced apoptosis. On the other hand, it was found that ALA-PDT-induced apoptosis was clearly inhibited by pretreatment of caspase-8 inhibitor. These data suggest that caspase-8-mediated apoptotic pathway is important in ALA-PDT-induced cell death.

  • PDF

Cremastranone-Derived Homoisoflavanes Suppress the Growth of Breast Cancer Cells via Cell Cycle Arrest and Caspase-Independent Cell Death

  • Yeram Choi;Sangkyu Park;Seul Lee;Ha-Eun Shin;Sangil Kwon;Jun-Kyu Choi;Myeong-Heon Lee;Seung-Yong Seo;Younghee Lee
    • Biomolecules & Therapeutics
    • /
    • 제31권5호
    • /
    • pp.526-535
    • /
    • 2023
  • Breast cancer is the most common cancer and a frequent cause of cancer-related deaths among women wordlwide. As therapeutic strategies for breast cancer have limitations, novel chemotherapeutic reagents and treatment strategies are needed. In this study, we investigated the anti-cancer effect of synthetic homoisoflavane derivatives of cremastranone on breast cancer cells. Homoisoflavane derivatives, SH-17059 and SH-19021, reduced cell proliferation through G2/M cell cycle arrest and induced caspase-independent cell death. These compounds increased heme oxygenase-1 (HO-1) and 5-aminolevulinic acid synthase 1 (ALAS1), suggesting downregulation of heme. They also induced reactive oxygen species (ROS) generation and lipid peroxidation. Furthermore, they reduced expression of glutathione peroxidase 4 (GPX4). Therefore, we suggest that the SH-17059 and SH-19021 induced the caspase-independent cell death through the accumulation of iron from heme degradation, and the ferroptosis might be one of the potential candidates for caspase-independent cell death.

8주간 운동이 생쥐의 gastrocnemius에서 Bcl-2, Bax, caspase-8, caspase-3와 HSP70에 미치는 영향 (Effects of 8-week Exercise on Bcl-2, Bax, Caspase-8, Caspase-3 and HSP70 in Mouse Gastrocnemius Muscle)

  • 김기범;김용안;박정준
    • 생명과학회지
    • /
    • 제20권9호
    • /
    • pp.1409-1414
    • /
    • 2010
  • 이 연구는 실험용 쥐를 대상으로 운동에 따라 골격근에서 일어나는 세포고사 경로 중 내인성 경로와 외인성경로에 의해 이루어지는 세포고사의 신호기전을 확인하여 운동이 세포고사에 어떠한 영향을 미치는지에 대한 구명하는데 있다. 이를 위해 ICR계 수컷 흰쥐 20마리를 일주일의 적응기간을 거쳐 통제집단(CON: n=10)과 운동집단(EX: n=10)으로 배정하였다. 운동은 8주간 주 5회 실시하였고, 트레드밀 속도 16.4 m/min와 경사도 4%로 설정하여 40분간 지속적인 운동을 실시하였다. 세포고사의 신호 경로 중 내인성 경로에 대한 검증 결과 Bcl-2, Bax 단백질, 그리고 Bcl-2/ Bax ratio는 그룹간 통계적 유의성은 나타나지 않았다. 반면, 세포고사의 경로 중 외인성 경로에 대한 검증 결과 caspase-8 단백질의 발현은 운동집단이 통제집단보다 유의하게 낮은 것으로 나타났으며(p<0.05), 세포고사 억제 단백질인 HSP70 단백질 발현은 운동집단이 통제집단보다 높게 나타났다. 더욱이, 세포고사 최종인자인 caspase-3의 활성화는 이루어 지지 않은 것으로 관찰되었다. 따라서 세포사멸의 신호경로 중 내인성 경로에 작용하는 Bcl-2와 Bax보다는 외인성 경로인 caspase-8과 HSP70의 영향으로 caspase-3가 분할되지 못하여 세포고사가 일어나지 않은 것으로 사료된다.

Apoptotic Signaling Pathways: Caspases and Stress-Activated Protein Kinases

  • Cho, Ssang-Goo;Choi, Eui-Ju
    • BMB Reports
    • /
    • 제35권1호
    • /
    • pp.24-27
    • /
    • 2002
  • Apoptotic cell death is an active process mediated by various signaling pathways, which include the caspase cascade and the stress-activated protein kinase pathways. The caspase cascade is activated by two distinct routes: one from cell surface and the other from mitochondria. Activation of the route from cell surface requires the cellular components that include membrane receptors, adaptor proteins such as TRADD and FADD, and caspase-8, while activation of the other from mitochondria requires Apaf-1, caspase-9, and cytosolic cytochrome c. On the other hand, persistent stimulation of the stress-activated protein kinase pathway is also shown to mediate apoptosis in many cell types. Gene-targeting studies with jnk- or jip-null mice, in particular, strongly suggest that this signaling pathway plays a pivotal role in the cellular machinery for apoptosis.

A ginseng saponin metabolite-induced apoptosis in HepG2 cells involves a mitochondria-mediated pathway and its downstream caspase-8 activation and Bid cleavage

  • Hee, Oh-Seon;Lee, Bang-Wool;Quan, Yin-Hu;Kim, Hyun-Mi;Lee, Byung-Hoon
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.107.1-107.1
    • /
    • 2003
  • 20-O-(${\beta}$-D-Glucopyranosyl)-20(S)-protopanaxadiol (IH901), an intestinal bacterial metabolite of ginseng saponins formed from ginsenosides Rb1, Rb2 and Rc, is suggested to be a potential chemopreventive agent. Here we show that IH901 induces apoptosis in human hepatoblastoma HepG2 cells. IH901 led to an early activation of procaspase-3 (6 h posttreatment), and the activation of caspase-8 became evident only later (18 h posttreatment). Caspase activation was a necessary requirement for apoptosis because caspase inhibitors significantly inhibited cell death by IH901. (omitted)

  • PDF

Type I Interferon Increases Inflammasomes Associated Pyroptosis in the Salivary Glands of Patients with Primary Sjögren's Syndrome

  • Seung-Min Hong;Jaeseon Lee;Se Gwang Jang;Jennifer Lee;Mi-La Cho;Seung-Ki Kwok;Sung-Hwan Park
    • IMMUNE NETWORK
    • /
    • 제20권5호
    • /
    • pp.39.1-39.13
    • /
    • 2020
  • Sjögren's syndrome (SS) is a chronic and systemic autoimmune disease characterized by lymphocytic infiltration in the exocrine glands. In SS, type I IFN has a pathogenic role, and recently, inflammasome activation has been observed in both immune and non-immune cells. However, the relationship between type I IFN and inflammasome-associated pyroptosis in SS has not been studied. We measured IL-18, caspase-1, and IFN-stimulated gene 15 (ISG15) in saliva and serum, and compared whether the expression levels of inflammasome and pyroptosis components, including absent in melanoma 2 (AIM2), NLR family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC), caspase-1, gasdermin D (GSDMD), and gasdermin E (GSDME), in minor salivary gland (MSG) are related to the expression levels of type I IFN signature genes. Expression of type I IFN signature genes was correlated with mRNA levels of caspase-1 and GSDMD in MSG. In confocal analysis, the expression of caspase-1 and GSDMD was higher in salivary gland epithelial cells (SGECs) from SS patients. In the type I IFN-treated human salivary gland epithelial cell line, the expression of caspase-1 and GSDMD was increased, and pyroptosis was accelerated in a caspase-dependent manner upon inflammasome activation. In conclusion, we demonstrate that type I IFN may contribute to inflammasome-associated pyroptosis of the SGECs of SS patients, suggesting another pathogenic role of type I IFN in SS in terms of target tissue -SGECs destruction.

Involvement of G1 arrest and caspase-3 activation in apoptosis induced by bovine lactoferricin

  • Yoo, Yung-Choon;Lee, Kyung-Bok
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.325.2-325.2
    • /
    • 2002
  • We investigated the effect of bovine lactoferricin (Lfcin-B) on cell cycle regulation and caspase activation in tumor cells. Treatment with Lfcin-B resulted in the production of intracellular reactive oxygen species (ROS) during apoptosis of THP-1 cells. Biochemical analysis revealed that Lfcin-B-induced apoptosis. the cell cycle arrest and caspase activation were completely abrogated by addition of an antioxidant such as N-acetylcysteine(NAC). (omitted)

  • PDF