• Title/Summary/Keyword: Caspase 3

검색결과 1,759건 처리시간 0.031초

Gemcitabine의 세포사멸 기전 연구 (Mechanism of gemcitabine-induced apoptosis)

  • 설재원;이유진;강동원;강형섭;김남수;김인식;박상열
    • 대한수의학회지
    • /
    • 제45권4호
    • /
    • pp.495-500
    • /
    • 2005
  • The nucleoside analogue gemcitabine (2', 2-difluorideoxycytide) is potential against a wide variety of solid tumors and considered to be one of the most active drugs in the treatment of non-small cell lung cancer (NSCLC). In this study, we investigated the signals of gemcitabine-induced apoptosis, especially in point of caspase pathway in A549. We exposed A549 cells to gemcitabine for dose/time dependent manner and the results showed that gemcitabine induced apoptotic cell death in a time/dose-dependent manner. We also treated to gemcitabine and Z-VAD-fmk as a pan-caspase inhibitor for 24 hours. Gemcitabine alone induced 35.3% cell death, and co-treatment with gemcitabine and Z-VAD-fmk induced 15.1% apoptotic cell death. Our results demonstrated that Z-VAD-fmk as a pan-caspase did not completely block the gemcitabine-induced apoptosis. Western blotting analysis showed that gemcitabine increased caspase-3, active caspase-8, p21 and p53 protein expressions in A549. Co-treatment with Z-VAD-fmk completely blocked caspase-3 and active caspase-8 protein expressions, but did not change the level of p21 and p53 protein expressions. Our data indicate that gemcitabine induced apoptosis through caspase-dependent and -independent pathways in A549.

Curcumin-Induced Apoptosis of A-431 Cells Involves Caspase-3 Activation

  • Shim, Joong-Sup;Lee, Hyung-Joo;Park, Sang-shin;Cha, Bong-Gee;Chang, Hae-Ryong
    • BMB Reports
    • /
    • 제34권3호
    • /
    • pp.189-193
    • /
    • 2001
  • Curcumin a yellow pigment from Curcuma Tonga, has been known to possess antioxidative and anticarcinogenic properties, as well as to induce apoptosis in some cancer cells. There have been, however, several contradictory reports that hypothesized curcumin (a hydrophobic molecule) can bind a membrane Gpid bilayer and induce nonspecific cytotoxicity in some cell lines. Why curcumin shows these contradictory effects is unknown. In A-431 cells, growth inhibition by curcumin is due mostly to the specific inhibition of the intrinsic tyrosine kinase activity of the epidermal growth factor receptor, as reported earlier by Korutla et al. Thus, we assumed that the cell death of A-431 by curcumin might be due to the specific induction of apoptosis. In this paper we clearly show that curcumin induces apoptosis in A-431 cells. The cureumin-induced cell death of A-431 exhibited various apoptotic features, including DNA fragmentation and nuclear condensation. Furthermore, the curcumin-induced apoptosis of A-431 cells involved activation of caspase-3-like cysteine protease. Involvement of caspase-3 was further confirmed by using a caspase-3 specific inhibitor, DEVD-CHO. In another study, decreased nitric oxide (NO) production was also shown in A-431 cells treated with curcumin, which seems to be the result of the inhibition of the iNOS expression by curcumin, as in other cell lines. However, 24 h after treatment of curcumin there was increased NO production in A-431 cells. This observation has not yet been clearly explained. We assumed that the increased NO production may be related to denitrosylation of the enzyme catalytic site in caspase-3 when activated. Taken together, this study shows that the cell death of A-431 by curcumin is due to the induction of apoptosis, which involves caspase-3 activation.

  • PDF

권백의 Caspase-3 활성화를 통한 HL-60 세포에서 세포사멸 유도효과 (Effects of Selaginella Tamariscina on Apoptosis via the Activation of Caspase-3 in HL-60)

  • 남항우;이성원;안병상;조원준;김영목;문연자;안성훈;우원홍
    • 동의생리병리학회지
    • /
    • 제17권3호
    • /
    • pp.751-758
    • /
    • 2003
  • In our previous studies, we reported that Selaginella Tamariscina(ST) induced apoptotic cell death in HL-60 cells selectively. The cell viability after treatment with extract of ST was quantified by MTT assay and trypan bleu exclusion method. The results showed that application with ST in HL-60 induced 40% cell death at the concentration of 400 ㎍/ml. The cancericidic effect of Selaginella Tamariscina was mediated by apoptosis. Thus, HL-60 cells exposed to Selaginella Tamariscina displayed the DNA fragmentation ladder and nucleus chromatin condensation characteristic for apoptosis. The enzyme activity of caspase-3 and actived caspase-3 protein were markedly increased in HL-60 cells treated with the extract of Selaginella Tamariscina. In addition, the extract of Selaginella Tamariscina induced cleavage of PARP, a known substrate for caspase-3. The expression of Bcl-2, anti-apoptotic protein, was decreased by treatment of the aqueous extract of Selaginella Tamariscina in a dose-dependent manner. And the expression of pro-apoptotic Bax protein was increased. In conclusion, our results suggest that the extract of Selaginella Tamariscina may induce the apoptotic death of HL-60 cells via activation of caspase-3, cleavage of PARP protein, depletion of cellular ATP levels and Bcl-2 degradation.

동결 보호제(DMSO) 농도에 따른 돼지 중간엽 줄기세포의 Caspase 3과 7 발현 (Activation of Caspase-3 and -7 on Porcine Bone Marrow Derived Mesenchymal Stem Cells (pBM-MSCs) Cryopreserved with Dimethyl Sulfoxide (DMSO))

  • 옥선아;노규진
    • 한국수정란이식학회지
    • /
    • 제27권3호
    • /
    • pp.183-187
    • /
    • 2012
  • Adult stem cell transplantation has been increased every year, because of the lack of organ donors for regenerative medicine. Therefore, development of reliable and safety cryopreservation and bio-baking method for stem cell therapy is urgently needed. The present study investigated safety of dimethyl sulfoxide (DMSO) such as common cryoprotectant on porcine bone marrow derived mesenchymal stem cells (pBM-MSCs) by evaluating the activation of Caspase-3 and -7, apoptosis related important signal pathway. pBM-MSCs used for the present study were isolated density gradient method by Ficoll-Paque Plus and cultured in A-DMEM supplemented 10% FBS at $38.5^{\circ}C$ in 5% $CO_2$ incubator. pBM-MSCs were cryopreserved in A-DMEM supplemented either with 5%, 10% or 20% DMSO by cooling rate at $-1^{\circ}C$/min in a Kryo 360 (planner 300, Middlesex, UK) and kept into $LN_2$. Survival rate of cells after thawing did not differ between 5% and 10% DMSO but was lowest in 20% DMSO by 0.4% trypan blue exclusion. Activation of Caspase-3 and -7 by Vybrant FAM Caspase-3 and -7 Assay Assay Kit (Molecular probes, Inc.OR, USA) was analyzed with a flow cytometer. Both of cryopreserved and control groups (fresh pBM-MSCs) were observed after the activation of Caspase-3 and -7. The activation did not differ between 5% and 10% DMSO, but was observed highest in 20% DMSO. Therefore 5% DMSO can be possibly used for cell cryopreservation instead of 10% DMSO.

EphA Receptors Form a Complex with Caspase-8 to Induce Apoptotic Cell Death

  • Lee, Haeryung;Park, Sunjung;Kang, Young-Sook;Park, Soochul
    • Molecules and Cells
    • /
    • 제38권4호
    • /
    • pp.349-355
    • /
    • 2015
  • EphA7 has been implicated in the regulation of apoptotic cell death in neural epithelial cells. In this report, we provide evidence that EphA7 interacts with caspase-8 to induce apoptotic cell signaling. First, a pull-down assay using biotinylated ephrinA5-Fc showed that EphA7 co-precipitated with wild type caspase-8 or catalytically inactive caspase-8 mutant. Second, co-transfection of EphA7 with caspase-8 significantly increased the number of cleaved caspase-3 positive apoptotic cells under an experimental condition where transfection of EphA7 or caspase-8 alone did not affect cell viability or apoptosis. EphA4 also had a causative role in inducing apoptotic cell death with caspase-8, whereas EphA8 did not. Third, caspase-8 catalytic activity was essential for the apoptotic signaling cascade, whereas tyrosine kinase activity of the EphA4 receptor was not. Interestingly, we found that kinase-inactive EphA4 was well co-localized at the plasma membrane with catalytically inactive caspase-8, suggesting that an interaction between these mutant proteins was more stable. Finally, we observed that the extracellular region of the EphA7 receptor was critical for interacting with caspase-8, whereas the cytoplasmic region of EphA7 was not. Therefore, we propose that Eph receptors physically associate with a transmembrane protein to form an apoptotic signaling complex and that this unidentified receptor-like protein acts as a biochemical linker between the Eph receptor and caspase-8.

연교(Forsythiae fructus)로부터 분리한 caspase 유도 저해물질 (A Caspase Inducing Inhibitor Isolated from Forsythiae fructus)

  • 김진희;고영희;김미리;김현아;이상명;이충환
    • 한국식품과학회지
    • /
    • 제34권1호
    • /
    • pp.114-117
    • /
    • 2002
  • 연교의 메탄올 추출물로부터 caspase 저해물질을 분리하였으며, ESI-MS, $^1H-NMR$, $^13C-NMR$, DEPT 등의 기기분석 자료에 의하여 rengyolone으로 동정하였다. 이 물질은 $IC_{50}\;6.25\;{\mu}g/mL$의 농도에서 etoposide가 처리된 U937 세포주의 caspase-3 유도 저해를 나타내었다. 또한 rengyolone은 $Interleukin-1{\beta}$가 처리된 D10S 세포에서 caspase-1의 유도저해활성을 나타내었으며, $IC_{50}$값은 $7.5\;{\mu}g/mL$이었다.

Expression of Matrix Metalloproteinase-2, but not Caspase-3, Facilitates Distinction between Benign and Malignant Thyroid Follicular Neoplasms

  • Sanii, Sanaz;Saffar, Hiva;Tabriz, Hedieh M.;Qorbani, Mostafa;Haghpanah, Vahid;Tavangar, Seyed M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권5호
    • /
    • pp.2175-2178
    • /
    • 2012
  • Purpose: Definite diagnosis of follicular thyroid carcinoma (FTC) is based on the presence of capsular or vascular invasion. To date, no reliable and practical method has been introduced to discriminate this malignant neoplasm from follicular thyroid adenoma (FTA) in fine needle aspiration biopsy material. Matrix metalloproteinase-2 (MMP-2), by degrading extracellular matrix, and caspase-3, by induction of apoptosis, have been shown to play important roles in carcinogenesis and aggressive behavior in many tumor types. The aim of this study was to examine expression of MMP-2 and caspase-3 in thyroid follicular neoplasms and to determine their usefulness for differential diagnosis. Method: Sixty FTAs and 41 FTCs were analysed immunohistochemically for MMP-2 and caspase-3. Result: MMP-2 was positive in 4 FTCs (9.8%), but in none of FTAs, with statistical significance (p= 0.025). Caspase-3 was positive in 30 (50%) of FTAs and in 27 (65.9%) of FTCs. Conclusion: Our results show MMP-2 expression only in FTCs and suggest that this protein may be a useful marker to confirm diagnosis of FTC versus FTA with 100% specificity and 100% predictive value of a positive test. We failed to show any differential diagnostic value for caspase-3 in thyroid follicular neoplasms.

PC12 세포에서 알코올 유발성 세포 사멸에 대한 Rg3 풍부 고려 홍삼의 신경세포 보호 효과 (Neuroprotective effects of Rg3-enriched Korean Red Ginseng on alcohol-induced apoptosis in PC12 Cells)

  • 최나은;류진협;이동하;조현정
    • 한국산학기술학회논문지
    • /
    • 제18권12호
    • /
    • pp.521-528
    • /
    • 2017
  • 과도한 음주는 치매 및 알츠하이머 병과 같은 여러 신경계 질환을 일으키는 주요원인 중 하나로 알려져 있으며 이를 해결하기 위한 많은 노력인 진행 중이다. 또한, 홍삼은 신경 세포의 생존, 세포 자멸사의 억제 및 신경 세포의 신경 재생을 향상시키는 것으로 알려져 있다. 본 연구의 목적은 Rg3 풍부 고려홍삼 추출액(KRG)이 알코올 유발성 신경독성으로 인하여 일어나는 PC12 세포의 세포 사멸을 억제 할 수 있는지, 그리고 KRG가 caspase 매개 경로와 관련된 몇 가지 인자들을 어떻게 조절하는지 확인하는 것이다. 그 방법으로, 우리는 PC12 세포에서의 세포 생존율과 세포 사멸율은 EZ-Cytox 세포 생존율 측정 kit와 유세포 분석기로 측정하였고, 세포 자멸 관련 단백질(Bcl-2, Bax, caspase-3)의 발현 정도를 Western blot기법으로 측정하였으며, 측정된 결과의 유의성을 ANOVA 분석법으로 확인하였다. 그 결과, KRG는 Bcl-2의 발현을 증가시키고, Bid와 Bax 및 caspase-3 발현을 저해하였고, 이를 통해 알코올로 유도된 PC12 세포의 세포 사멸을 억제하였다. 이러한 결과를 통해, KRG에 의해 유도된 Bcl-2 발현의 증가와 Bid 및 Bax 발현의 하향 조절이 caspase-3 발현을 하향 조절하고, 결국 미토콘드리아 세포 사멸 경로를 억제한다는 것을 결론내릴 수 있었다. 본 연구는 향 후, KRG가 신경 보호제 후보로서 개발할 가치가 있음을 제시하였다.

Apoptotic Activity of Insect Pathogenic Fungus Paecilomycesc japonica Toward Human Acute Leukemia Jurkat T Cells is Associated with Mitochondria-Dependent Caspase-3 Activation Regulated by Bcl-2

  • Park, Hye-Won;Jen, Do-Youn;Kim, Young-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권6호
    • /
    • pp.950-956
    • /
    • 2002
  • The antitumor activity of the insect pathogenic fungus Paecilomyces japonica has been attributed to apoptotic cell death. However, the mechanism underlying the induced apoptosis has not yet been elucidated. In this study, we for the first time show that mitochondria-dependent caspase-3 activation were associated with the apoptotic activity of P. japonica in human acute leukemia Jurkat T cells. When Jurkat T cells were treated with the ethyl acetate extract of P japonica at concentrations ranging from $2-6{\mu}g/ml$, apoptotic cell death. accompanied by several biochemical events such as caspase-9 activation, caspase-3 activation, degradation of poly (ADP-ribose) polymerase (PARP), and apoptotic DNA fragmentation, was induced in a dose-dependent manner. In addition, the release of cytochrome c from mitochondria was detected. Under these conditions, the expression of Fas and Fas-ligand (FasL) remained unchanged. Ethyl acetate extract-induced mitochondrial cytochrome c release, caspase-3 activation, PARP cleavage, and apoptotic DNA fragmentation were suppressed by the ectopic expression of Bcl-2, which is known to block mitochondrial cytochrorme c release. Accordingly, these results demonstrate that P. japonica-induced apoptotic cell death is mediated by a cytochrome c-dependent caspase-3 activation pathway that can be interrupted by Bcl-2.

$p19^{ras}$ Accelerates $p73{\beta}$-mediated Apoptosis through a Caspase-3 Dependent Pathway

  • Jang, Sang-Min;Kim, Jung-Woong;Choi, Kyung-Hee
    • Animal cells and systems
    • /
    • 제13권4호
    • /
    • pp.399-403
    • /
    • 2009
  • $p19^{ras}$ is an alternative splicing variant of the proto-oncogene c-H-ras pre-mRNA of $p21^{ras}$. In contrast to $p21^{ras}$, $p19^{ras}$ does not have a C-terminal CAAX motif that targets the plasma membrane and is localized to both the cytoplasm and nucleus. We found that $p19^{ras}$ activated the transcriptional activity of $p73{\beta}$ through protein-protein interactions in the nucleus. p73 is known to play an important role in cellular damage responses such as apoptosis. Although p73 is a structural and functional homologue of p53, p73-mediated apoptosis has not yet been clearly elucidated. In this study, we demonstrate that the interaction between $p19^{ras}$ and $p73{\beta}$ accelerated $p73{\beta}$-induced apoptosis through a caspase-3 dependent pathway. Treatment with DEVD-CHO, a caspase inhibitor, also strengthened $p73{\beta}$-mediated apoptosis through a caspase-3 dependent pathway. Furthermore, the enhanced transcriptional activity of endogenous $p73{\beta}$ by treatment with Taxol was amplified by $p19^{ras}$ overexpression, which markedly increased caspase-3 dependent apoptosis in the p53-null SAOS2 cancer cell line. Our findings indicate a functional linkage between $p19^{ras}$ and p73 in caspase-3 mediated apoptosis of cancer cells.