Browse > Article
http://dx.doi.org/10.5762/KAIS.2017.18.12.521

Neuroprotective effects of Rg3-enriched Korean Red Ginseng on alcohol-induced apoptosis in PC12 Cells  

Choi, Na-Eun (Department of Biomedical Laboratory Science, College of Medical Science, Konyang University)
Ryu, Jin-Hyeob (Biorchestra Ltd., KRIBB)
Lee, Dong-Ha (Department of Biomedical Laboratory Science, Korea Nazarene University)
Cho, Hyun-Jeong (Department of Biomedical Laboratory Science, College of Medical Science, Konyang University)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.18, no.12, 2017 , pp. 521-528 More about this Journal
Abstract
Excessive alcohol consumption is one of the leading causes of many neurological diseases, such as dementia and Alzheimer's disease, and many efforts are under way to solve them. Red ginseng is known to enhance neuronal survival, inhibit apoptosis, and promote nerve regeneration of nerve cells. This study examined whether Rg3-enriched Korean red ginseng extract (KRG) inhibits the apoptosis of PC12 cells caused by alcohol-induced neurotoxicity and how KRG regulates several factors related to the caspase mediated pathway. In this way, the cell survival rate and apoptosis rate of PC12 cells were measured using an EZ-Cytox cell viability assay kit and flow cytometry, respectively. The expression of the apoptosis-related proteins (Bcl-2, Bid, Bax and caspase-3) were analyzed by western blotting, and the significance of the measured results was confirmed using the ANOVA method. As a result, KRG increased the expression of Bcl-2; inhibited the expression of Bid, Bax, and caspase-3; and inhibited the apoptosis of alcohol-induced PC12 cells. These results mean that the KRG-induced increase in Bcl-2 expression and down-regulation of Bid and Bax expression down-regulate caspase-3 expression, which in turn inhibits the mitochondrial apoptotic pathways. This study suggests that KRG is worth developing as a neuroprotective agent candidate.
Keywords
Apoptosis; Bax; Bcl-2; Bid; Caspase-3; Rg3-enriched Korean Red Ginseng;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 X. L. Li, W. D. Cheng, J. Li, X. L. Guo, C. J. Guo, X.H. Meng, S. G. Sun, L. X. Wang, "Protective effect of estrogen on apoptosis in a cell culture model of Parkinson's disease", Clin lnvest Med, vol. 31, no. 5, pp. E258-E264, October, 2008. DOl: https://doi.org/10.25011/cim.v31i5.4872   DOI
2 D. H. Youn, S. J. Kim, K. S. Ahn, J. Y. Um, S. H. Hong, "Korean Red Ginseng improves atopic dermatitis-like skin lesions by suppressing expression of proinflammatory cytokines and chemokines in vivo and in vitro", J Ginseng Res, vol. 41, no. 2, pp. 134-143, February, 2017. DOl: https://doi.org/10.1016/j.jgr.2016.02.003   DOI
3 K. S. Baek, Y. S. Yi, Y. J. Son, D. Jeong, N. Y. Sung, A. Aravinthan, J. H. Kim, J. Y. Cho, "Comparison of anticancer activities of Korean Red Ginseng-derived fractions", J Ginseng Res, vol. 41, no. 3, pp. 386-391, January, 2017. DOl: https://doi.org/10.1016/j.jgr.2016.11.001   DOI
4 W. Y. Ong, T. Farooqui, H. L. Koh, A. A. Farooqui, E. A. Ling, "Protective effects of ginseng on neurological disorders", Frontiers in Aging Neuroscience, vol. 7, no. 129, July, 2015. DOl: https://doi.org/10.3389/fnagi.2015.00129
5 S. Ryu, S. Koo, K. T. Ha, S. Kim, "Neuroprotective effect of Korea Red Ginseng extract on 1-methyl-4-phenylpyridinium-induced apoptosis in PC12 Cells", Animal Cells and Systems, vol. 20, no. 6, pp. 363-368, December, 2016. DOl: https://doi.org/10.1080/19768354.2016.1257510   DOI
6 X. Sun, J. Liu, J. F. Crary, C. Malagelada, D. Sulzer, L. A. Greene, O. A. Levy, "ATF4 Protects Against Neuronal Death in Cellular Parkinson's Disease Models by Maintaining Levels of Parkin", The Journal of Neuroscience, vol. 33, no. 6, pp. 2398-2407, 2013. DOl: https://doi.org/10.1523/JNEUROSCl.2292-12.2013   DOI
7 J. Wang, F. Gao, C. Zhang, "Protective effect of tetramethylpyrazine on caffeine-induced PC1 2 cell injury", Herald of Medicine, vol. 33, no. 6, pp. 695-698, 2014.
8 D. S. Sheth, N. F. Tajuddin, M. J. Druse, "Antioxidant neuroprotection against ethanol-induced apoptosis in HN2-5 cells", Brain Res, vol. 1285, pp. 14-21, August, 2009. DOl: https://doi.org/10.1016/j.brainres.2009.06.029   DOI
9 N. J. Pantazis, D. P. Dohrman, J. Luo, C. R. Goodlett, J. R. West, "Alcohol reduces the number of pheochromocytoma (PC12) cells in culture", Alcohol, vol. 9, no. 3, pp. 171-180, May-Jun, 1992. DOl: https://doi.org/10.1016/0741-8329(92)90048-F   DOI
10 F. Fadda,Z. L. Rossetti, "Chronic ethanol consumption: from neuroadaptation to neurodegeneration", Prog Neurobiol, vol. 56, no. 4, pp. 385-431, November, 1998. DOl: https://doi.org/10.1016/S0301-0082(98)00032-X   DOI
11 M. Tomas, M. P. Marin, E. Martinez-Alonso, G. Esteban-Pretel, A. Diaz-Ruiz, R. Vazquez-Martinez, M. M. Malagon, J. Renau-Piqueras, J. A. Martinez-Menarguez, "Alcohol induces Golgi fragmentation in differentiated PC12 cells by deregulating Rab1-dependent ER-to-Golgi transport", Histochem Cell Biol, vol. 138, no. 3, pp. 489-501, September, 2012. DOl: https://doi.org/10.1007/s00418-012-0970-z   DOI
12 N. N. Danial, S. J. Korsmeyer. "Cell death: critical control points", Cell, vol. 116, no. 2, pp. 205-219. January, 2004. DOl: https://doi.org/10.1016/S0092-8674(04)00046-7   DOI
13 A. Gross, "BCL-2 family proteins as regulators of mitochondria metabolism", Biochimica et Biophysica Acta (BBA)-Bioenergetics, vol. 1857, no. 8, pp. 1243-1246, 2016. DOl: https://doi.org/10.1016/j.bbabio.2016.01.017   DOI
14 W. A. Siddiqui, A. Ahad, H. Ahsan, "The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update", Archives of toxicology, vol. 89, no. 3, pp. 289-317, 2015. DOl: https://doi.org/10.1007/s00204-014-1448-7   DOI
15 K. M. Boatright, G. S. Salvesen. "Mechanisms of caspase activation", Curr Opin Cell Biol., vol. 15, no. 6, pp. 725-731, December, 2003. DOl: https://doi.org/10.1016/j.ceb.2003.10.009   DOI
16 J. M. Gohlke, W. C. Griffith, S. M. Bartell, T. A. Lewandowski, E. M. Faustman, "A computational model for neocortical neuronogenesis predicts ethanol-induced neocortical neuron number deficits", Dev Neurosci, vol. 24, no. 6, pp. 467-477, 2002. DOl: https://doi.org/10.1159/000069357   DOI
17 M. Gasior, M. A. Rogawski, A. L. Hartman, "Neuroprotective and disease-modifying effects of the ketogenic diet", Behav Pharmacol, vol. 17, no. 5-6, pp. 431-439, September, 2006. DOl: https://doi.org/10.1097/00008877-200609000-00009   DOI
18 F. C. Lau, B. Shukitt-Hale, J. A. Joseph, "Nutritional intervention in brain aging: reducing the effects of inflammation and oxidative stress", Subcell Biochem, vol. 42, pp. 299-318, 2007. DOl: https://doi.org/10.1007/1-4020-5688-5_14
19 R. Dosunmu, J. Wu, M. R. Basha, N. H. Zawia, "Environmental and dietary risk factors in Alzheimer's disease", Expert Rev Neurother, vol. 7, no. 7, pp. 887-900, July, 2007. DOl: https://doi.org/10.1586/14737175.7.7.887   DOI
20 J. W. Olney, D. F. Wozniak, V. Jevtovic-Todorovic, N. B. Farber, P. Bittigau, C. lkonomidou, "Drug-induced apoptotic neurodegeneration in the developing brain", Brain Pathol, vol. 12, no. 4, pp. 488-498, October, 2002. DOl: https://doi.org/10.1111/j.1750-3639.2002.tb00467.x
21 R. N. Kalaria, G. E. Maestre, R. Arizaga, R. P. Friedland, D. Galasko, K. Hall, J. A. Luchsinger, A. Ogunniyi, E. K. Perry, F. Potocnik, M. Prince, R. Stewart, A. Wimo, Z. X. Zhang, P. Antuono, "Alzheimer's disease and vascular dementia in developing countries: prevalence, management, and risk factors", Lancet Neurol, vol. 7, no. 9, pp. 812-826, September, 2008. DOl: https://doi.org/10.1016/S1474-4422(08)70169-8   DOI
22 B. N. Ramesh, T. S. Rao, A. Prakasam, K. Sambamurti, K. S. Rao, "Neuronutrition and Alzheimer's disease", J Alzheimers Dis, vol. 19, no. 4, pp. 1123-1139, 2010. DOl: https://doi.org/10.3233/JAD-2010-1312   DOI
23 Y. Tizabi, K. F. Manaye, R. E. Taylor, "Nicotine blocks ethanol-induced apoptosis in primary cultures of rat cerebral cortical and cerebellar granule cells", Neurotoxicity Research, vol. 7, no. 4, pp. 319, December, 2005. DOl: https://doi.org/10.1007/BF03033888   DOI
24 Y. Sari,F. C. Zhou, "Prenatal alcohol exposure causes long-term serotonin neuron deficit in mice", Alcohol Clin Exp Res, vol. 28, no. 6, pp. 941-948, June, 2004. DOl: https://doi.org/10.1097/01.ALC.0000128228.08472.39   DOI
25 J. Y. Han, Y. Joo, Y. S. Kim, Y. K. Lee, H. J. Kim, G. J. Cho, W. S. Choi, S. S. Kang, "Ethanol induces cell death by activating caspase-3 in the rat cerebral cortex", Mol Cells, vol. 20, no. 2, pp. 189-195, October, 2005.
26 J. W. Maas, R. A. lndacochea, L. M. Muglia, T. T. Tran, S. K. Vogt, T. West, A. Benz, A. A. Shute, D. M. Holtzman, S. Mennerick, J. W. Olney, L. J. Muglia, "Calcium-Stimulated Adenylyl Cyclases Modulate Ethanol-lnduced Neurodegeneration in the Neonatal Brain", The Journal of Neuroscience, vol. 25, no. 9, pp. 2376-2385, 2005. DOl: https://doi.org/10.1523/JNEUROSCl.4940-04.2005   DOI
27 K. Mann, l. Agartz, C. Harper, S. Shoaf, R. R. Rawlings, R. Momenan, D. W. Hommer, A. Pfefferbaum, E. V. Sullivan, R. F. Anton, D. J. Drobes, M. S. George, R. Bares, H.-J. Machulla, G. Mundle, M. Reimold, A. Heinz, "Neuroimaging in Alcoholism: Ethanol and Brain Damage", Alcoholism: Clinical and Experimental Research, vol. 25, pp. 104S-109S, May, 2001. DOl: https://doi.org/10.1111/j.1530-0277.2001.tb02383.x   DOI