• Title/Summary/Keyword: Casing Oscillator

Search Result 15, Processing Time 0.023 seconds

A Study on the Inveres Kinematic Analysis of a Casing Oscillator (케이싱 오실레이터의 역기구학 해석)

  • Lee, Eun-Jun;Bae, Jae-Man;Park, Myeong-Gwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.47-53
    • /
    • 2000
  • The casing oscillator is a construction equipment to clamp, oscillate and push a casing for foundation work. In case that the casing oscillator is operated on the slant ground, if another construction heavy equipment is not used, it is impossible to insert the casing in ground using only casing oscillator. So in this paper, we present the new casing oscillator that need not to level the ground for work of casing insertion. This mechanism can execute 4 DOF motion by actuating 5 single - rod hydraulic cylinders. The inverse kinematics analysis of the casing oscillator is performed and we verify the validity of kinematics analysis through the experiment.

  • PDF

The Forward Kinematics Solution for Casing Oscillator Using the Kinematic Inversion (기구학적 전이를 이용한 케이싱 오실레이터의 순기구학 해석)

  • 배형섭;백재호;박명관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.130-139
    • /
    • 2004
  • The Casing Oscillator is a bore file Equipment for the all-casing process. All-casing process is a method of foundation work in construction yard to oscillate steel Casing in the ground. The existing Casing Oscillator has some problem like not boring horizontally with disturbance and not driving Casing othor angle except horizon. To solve problem, the new structure Casing Oscillator is presented and studied. The performance of Casing Oscillator is improved by kinematics analysis. The Casing Oscillator is similar to the parallel manipulator in structure. So we obtain Inverse kinematics solution of Casing Oscillator easily. But it is difficult to solve forward kinematics of Casing Oscillator. T his paper presents a novel pose description corresponding to the structure characteristics of parallel manipulators. Through analysis on geometry theory, we obtain a new method of the closed-form solution to the forward kinematics using Kinematic Inversion. The closed-form solution contains two different meanings -analytical and real-time. So we reach the goal of practical application and control. Closed-form forward kinematics solution is verified by an inverse kinematics analysis. It shows that the method has a practical value for real -time control and inverse kinematics servo control.

A Study on the Real Time Auto-Balancing of a Casing Oscillator Using Posture Feedback Control (위치 피드백 제어를 이용한 케이싱 오실레이터의 실시간 오토밸런싱에 관한 연구)

  • 이은준;김주영;백재호;박명관
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.688-696
    • /
    • 2003
  • The casing oscillator used for basic construction of buildings, factories and bridges is a construction machine, which rotates and rolls the casing to insert it into the ground. It is very important that the casing is positioned perpendicular to the sea level regardless of the slope of the ground. In this paper, we present a new casing oscillator that doesn't need additional work to level the ground for the casing insertion. The kinematic analysis fur work space of a casing oscillator is presented and carried out with auto-balancing of the casing oscillator using posture feedback control.

A Study on the Forward Kinematic Analysis of a Casing Oscillator (케이싱오실레이터의 순기구학 해석)

  • 백재호;신진오;이은준;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.237-240
    • /
    • 1997
  • The casing oscillator is a construction equipment to clamp, oscillate and push a casing for foundation work. In case that the casing oscillator is operated on the slant ground, if another construction heavy equipment is not used, it is impossible to insert the casing in ground using only casing oscillator. So in this paper, we present the new casing oscillator that need not to level the ground for work of casing insertion. This mechanism can execute 4 DOF motion by actuating 5 single - rod hydraulic cylinders. The forward kinematics analysis of the casrng oscillator by tetrahedron geometry is performed so predict workspace, direction and poison of casing oscillatoer.

  • PDF

The Study on the Real-Time control of Casing Oscillator Using the Inverse Kinematics (역기구학을 이용한 케이싱 오실레이터의 실시간 제어)

  • 배형섭;백재호;김병진;이은준;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.442-445
    • /
    • 2002
  • The casing oscillator used for the foundation work in the construction place. Construction machinery which makes the casing rotate and roll can insert the casing in the ground. It is very important to make the casing perpendicular to sea level regardless of slope of ground. So in this paper, we present the new type casing oscillator that need not to level the ground for the work of casing insertion. The inverse kinematics analysis for the real-time control of casing oscillator is presented.

  • PDF

Kinematic Manipulability Analysis of the Casing Oscillator (케이싱 오실레이터의 기구학적 조작성 해석)

  • Nam, Yun-Joo;Park, Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.904-914
    • /
    • 2004
  • In this paper, input-output velocity and force transmission characteristics of the Casing Oscillator which is a construction machine with 4 degrees of freedom are examined. After the Jacobian matrix is decomposed into the linear part and angular part, the velocity and force transmission characteristics for the linear and angular workspace are easily analyzed and visualized even if the Casing Oscillator has the spatial dimensional workspace with 4 DOF. Regarding the manipulability measure of the Casing Oscillator, the kinematic isotropic index and the manipulability measure which represent the isotropy and volume of the manipulability ellipsoid, respectively, are combined to coincidently consider them with respect to equivalent ranges and fluctuations. A performance of the Casing Oscillator is evaluated by the newly proposed manipulability measures.

The Singularity Analysis of the Casing Oscillator (케이싱 오실레이터의 특이점 해석)

  • 남윤주;배형섭;박명관
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.100-108
    • /
    • 2004
  • In this paper, the new casing oscillator, which is a construction machine and which structure is similar to that of a parallel manipulator with redundancy, is proposed. The singularity analysis of this machine is performed by two different methods. First, the singularities are found by the numerical method at configurations where the rank of the Jacobian matrix becomes deficient. The singularities are outside the workspace. To investigate the physical information on these configurations, the singularities are examined by the geometric method at configurations where the casing oscillator cannot resist the external forces and moments applied to the upper platform due to losing static equilibrium. The results of the geometric method are the same as those of the numerical method. It proves that the new casing oscillator is free from the singularity, which causes serious problems to a parallel manipulator.

Manipulability Analysis of the Casing Oscillator (케이싱 오실레이터의 조작성 해석)

  • 남윤주;이육형;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1693-1696
    • /
    • 2003
  • In this paper, input-output velocity transmission characteristics of the Casing Oscillator, which is a constructional machine with 4 degree of freedom are examined. After the Jacobian matrix is decomposed into linear part and angular part, the linear and the angular velocity transmission characteristics are analyzed and visualized in easy way even in the case of 3 dimensional task space with 4 variables. Regarding the measure of dexterity of the Casing Oscillator, the kinematic isotropic index and the manipulability measures which are respectively represented the isotropy and the volume of the manipulability ellipsoid are combined. A performance of the Casing Oscillator is evaluated by the combined manipulability measure.

  • PDF

A study for horizontal control of the Tornado using PWM method (PWM을 이용한 토네이도의 수평제어)

  • 김진호;배형섭;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1713-1716
    • /
    • 2003
  • Casing Oscillator is a construction machine that used to insert casings which is based on construction of a building or bridge into the ground. The purpose of using casing supports a pile or in case when heavy loads and moments happens. It is very important that the casings are retaining perpendicular to sea level regardless of the slope of the ground. So it requires that Casing Oscillator keep horizontality. But, it was useless a horizontal control without another heavy equipment. Tornado is a type of Casing Oscillator to advance. It controls horizontality with 4 cylinders. Those cylinders controlled by high-speed solenoid valves. This paper represents horizontal control of the Tornado using Kinematics. First. the horizontal control simulated by AMESim, which is simulation tool. then it compared with experimental results.

  • PDF

Forward Kinematic Analysis of Casing Oscillator (케이싱 오실레이터의 순기구학 해석)

  • Nam, Yun-Joo;Park, Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1845-1855
    • /
    • 2004
  • This paper presents the forward kinematics of the Casing Oscillator that is a construction machine. The Structure of the Casing Oscillator is similar to those of 4 degree-of-freedom mechanisms with a redundancy. With analytical (geometrical) methods, the solutions of the forward position kinematics problem are significantly found by both solving an 8$^{th}$ -order polynomial equation in one unknown variable and using one over-constraint geometrical equation which can be derived under the condition of a redundancy. The proposed forward kinematics has closed-form solutions and allows Auto-Balancing control of the moving platform in real time. Numerical examples are presented and the results are verified by an inverse kinematics analysis.