• 제목/요약/키워드: Cascaded multilevel inverter

검색결과 112건 처리시간 0.018초

Implementation of Cuckoo Search Optimized Firing Scheme in 5-Level Cascaded H-Bridge Multilevel Inverter for Power Quality Improvement

  • Singla, Deepshikha;Sharma, P.R.
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1458-1466
    • /
    • 2019
  • Multilevel inverters have appeared as a successful and utilitarian solution in many power applications. The prime objective of an inverter is to keep the fundamental component of the output voltage of a multilevel inverter at a preferred value. Equally important is the need to keep the harmonic components in the output voltage within stated harmonic limits. Therefore, the basis of this research is to develop a harmonic minimization function that optimizes the switching angles of cascaded H-bridge multilevel inverter. Due to benefits of the Cuckoo Search (CS) algorithm, it is applied to determine the switching angles, which are further used to generate the switching pattern for firing the H-bridges of multilevel inverter. Simulation results are compared with SPWM based firing scheme. The switching frequency for SPWM firing scheme is taken as 200 Hz since the switching losses are increased when switching frequency is high. To validate the ability of Cuckoo Search optimized firing scheme in minimization of harmonics, experimental results obtained from hardware prototype of Five Level Cascaded H-Bridge Multilevel Inverter equipped with a FPGA controller are presented to verify the simulation results.

A New Topology of Multilevel Voltage Source Inverter to Minimize the Number of Circuit Devices and Maximize the Number of Output Voltage Levels

  • Ajami, Ali;Mokhberdoran, Ataollah;Oskuee, Mohammad Reza Jannati
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권6호
    • /
    • pp.1328-1336
    • /
    • 2013
  • Nowadays multilevel inverters are developing generally due to reduced voltage stress on power switches and low total harmonic distortion (THD) in output voltage. However, for increasing the output voltage levels the number of circuit devices are increased and it results in increasing the cost of converter. In this paper, a novel multilevel inverter is proposed. The suggested topology uses less number of power switches and related gate drive circuits to generate the same level in output voltage with comparison to traditional cascaded multilevel inverter. With the proposed topology all levels in output voltage can be realized. As an illustration, a symmetric 13-level and asymmetric 29-level proposed inverters have been simulated and implemented. The total peak inverse (PIV) and power losses of presented inverter are calculated and compared with conventional cascaded multilevel inverter. The presented analyses show that the power losses in the suggested multilevel inverter are less than the traditional inverters. Presented simulation and experimental results demonstrate the feasibility and applicability of the proposed inverter to obtain the maximum number of levels with less number of switches.

Improvement of the Performance of the Cascaded Multilevel Inverters Using Power Cells with Two Series Legs

  • Babaei, Ebrahim;Dehqan, Ali;Sabahi, Mehran
    • Journal of Power Electronics
    • /
    • 제13권2호
    • /
    • pp.223-231
    • /
    • 2013
  • A modular three-phase multilevel inverter especially suitable for electrical drive applications has been previously presented. This topology is based on series connection of power cells in which each cell comprised of two inverter legs in series. In this paper, in order to generate the maximum number of voltage levels with reduced number of switches, three algorithms are proposed for determination of the magnitudes of dc voltage sources. In addition, a new hybrid multilevel inverter is proposed that is composed of series connection of the previously presented multilevel inverter and some H-bridges. The proposed topology has been compared with some other presented multilevel inverters. The performance of the proposed multilevel inverter has been verified by simulation and experimental results of a single-phase 39-level multilevel inverter.

Optimal Harmonic Stepped Waveform Technique for Solar Fed Cascaded Multilevel Inverter

  • Alexander, S.Albert;Thathan, Manigandan
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.261-270
    • /
    • 2015
  • In this paper, the Optimal Harmonic Stepped Waveform (OHSW) method is proposed in order to eliminate the selective harmonic orders available at the output of cascaded multilevel inverter (CMLI) fed by solar photovoltaic (SPV). This technique is used to solve the harmonic elimination equations based on stepped waveform analysis in order to obtain the optimal switching angles which in turn reduce the Total Harmonic Distortion (THD). The OHSW method considers the output voltage waveform as four equal symmetries in each half cycle. In the proposed method, a solar fed fifteen level cascaded multilevel is considered where the magnitude of six numbers of harmonic orders is reduced. A programmable pulse generator is developed to carry the switching angles directly to the semiconductor switches obtained as a result of OHSW analysis. Simulations are carried out in MATLAB/Simulink in which a separate model is developed for solar photovoltaic which serves as the input for cascaded multilevel inverter. A 3kWp solar plant with multilevel inverter system is implemented in hardware to show the effectiveness of the proposed system. Based on the observation the OHSW method provides the reduced THD thereby improving power quality in renewable energy applications.

A Modified Charge Balancing Scheme for Cascaded H-Bridge Multilevel Inverter

  • Raj, Nithin;G, Jagadanand;George, Saly
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2067-2075
    • /
    • 2016
  • Cascaded H-bridge multilevel inverters are currently used because it enables the integration of various sources, such as batteries, ultracapacitors, photovoltaic array and fuel cells in a single system. Conventional modulation schemes for multilevel inverters have concentrated mainly on the generation of a low harmonic output voltage, which results in less effective utilization of connected sources. Less effective utilization leads to a difference in the charging/discharging of sources, causing unsteady voltages over a long period of operation and a reduction in the lifetime of the sources. Hence, a charge balance control scheme has to be incorporated along with the modulation scheme to overcome these issues. In this paper, a new approach for charge balancing in symmetric cascaded H-bridge multilevel inverter that enables almost 100% charge balancing of sources is presented. The proposed method achieves charge balancing without any additional stages or complex circuit or considerable computational requirement. The validity of the proposed method is verified through simulation and experiments.

Experimental Validation of a Cascaded Single Phase H-Bridge Inverter with a Simplified Switching Algorithm

  • Mylsamy, Kaliamoorthy;Vairamani, Rajasekaran;Irudayaraj, Gerald Christopher Raj;Lawrence, Hubert Tony Raj
    • Journal of Power Electronics
    • /
    • 제14권3호
    • /
    • pp.507-518
    • /
    • 2014
  • This paper presents a new cascaded asymmetrical single phase multilevel converter with a lower number of power semiconductor switches and isolated DC sources. Therefore, the number of power electronic devices, converter losses, size, and cost are reduced. The proposed multilevel converter topology consists of two H-bridges connected in cascaded configuration. One H-bridge operates at a high frequency (high frequency inverter) and is capable of developing a two level output while the other H-bridge operates at the fundamental frequency (low frequency inverter) and is capable of developing a multilevel output. The addition of each power electronic switch to the low frequency inverter increases the number of levels by four. This paper also introduces a hybrid switching algorithm which uses very simple arithmetic and logical operations. The simplified hybrid switching algorithm is generalized for any number of levels. The proposed simplified switching algorithm is developed using a TMS320F2812 DSP board. The operation and performance of the proposed multilevel converter are verified by simulations using MATLAB/SIMULINK and experimental results.

Cascaded 멀티레벨 인버터의 고장 허용 제어를 위한 Level-Shifted PWM 기반의 새로운 변조 기법 (A Novel Modulation Strategy Based on Level-Shifted PWM for Fault Tolerant Control of Cascaded Multilevel Inverters)

  • 김석민;이준석;이교범
    • 전기학회논문지
    • /
    • 제64권5호
    • /
    • pp.718-725
    • /
    • 2015
  • This paper proposes a novel level-shifted PWM (LS-PWM) strategy for fault tolerant cascaded multilevel inverter. Most proposed fault-tolerant operation methods in many of studies are based on a phase-shifted PWM (PS-PWM) method. To apply these methods to multilevel inverter systems using LS-PWM, two additional steps will be implemented. During the occurrence of a single-inverter-cell fault, the carrier bands scheme is reconfigured and modulation levels of inverter cells are reassigned in this proposed fault-tolerant operation. The proposed strategy performs balanced three-phase line-to-line voltages and line currents when a switching device fault occurs in a cascaded multilevel inverter using LS-PWM. Simulation and experimental results are included in the paper to verify the proposed method.

A Hysteresis Current Controller for PV-Wind Hybrid Source Fed STATCOM System Using Cascaded Multilevel Inverters

  • Palanisamy, R.;Vijayakumar, K.
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.270-279
    • /
    • 2018
  • This paper elucidates a hysteresis current controller for enhancing the performance of static synchronous compensator (STATCOM) using cascaded H-bridge multilevel inverter. Due to the rising power demand and growing conventional generation costs a new alternative in renewable energy source is gaining popularity and recognition. A five level single phase cascaded multilevel inverter with two separated dc sources, which is energized by photovoltaic - wind hybrid energy source. The voltages across the each dc source is balanced and standardized by the proposed hysteresis current controller. The performance of STATCOM is analyzed by connecting with grid connected system, under the steady state & dynamic state. To reduce the Total Harmonic Distortion (THD) and to improve the output voltage, closed loop hysteresis current control is achieved using PLL and PI controller. The performance of the proposed system is scrutinized through various simulation results using matlab/simulink and hardware results are also verified with simulation results.

Half-bridge Cascaded Multilevel Inverter Based Series Active Power Filter

  • Karaarslan, Korhan;Arifoglu, Birol;Beser, Ersoy;Camur, Sabri
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.777-787
    • /
    • 2017
  • A new single phase half-bridge cascaded multilevel inverter based series active power filter (SAPF) is proposed. The main parts of the inverter are presented in detail. With the proposed inverter topology, any compensation voltage reference can be easily obtained. Therefore, the inverter acts as a harmonic source when the reference is a non-sinusoidal signal. A 31-level inverter based SAPF with the proposed topology, is manufactured and the voltage harmonics of the load connected to the point of common coupling (PCC) are compensated. There is no need for a parallel passive filter (PPF) since the main purpose of the paper is to represent the compensation capability of the SAPF without a PPF. It is aimed to compensate the voltage harmonics of the load fed by a non-sinusoidal supply using the proposed inverter. The validity of the proposed inverter based SAPF is verified by simulation as well as experimental study. The system efficiency is also measured in this study. Both simulation and experimental results show that the proposed multilevel inverter is suitable for SAPF applications.

Reduction of Components in Cascaded Transformer Multilevel Inverter Using Two DC Sources

  • Banaei, Mohamad Reza;Salary, Ebrahim;Alizadeh, Ramin;Khounjahan, Hossein
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권4호
    • /
    • pp.538-545
    • /
    • 2012
  • In this paper a novel cascaded transformer multilevel inverter is proposed. Each basic unit of the inverter includes two DC sources, single phase transformers and semiconductor switches. This inverter, which operates as symmetric and asymmetric, can output more number of voltage levels in the same number of the switching devices. Besides, the number of gate driving circuits is reduced, which leads to circuit size reduction and lower power consumption in the driving circuits. Moreover, several methods to determination of transformers turn ratio in proposed inverter are presented. Theoretical analysis, simulation results using MATLAB/SIMULINK and experimental results are provided to verify the operation of the suggested inverter.