• Title/Summary/Keyword: Cascade system

Search Result 444, Processing Time 0.026 seconds

Compressor Cascade Flow Analysis by Using Upwind Flux Difference Splitting Method (풍상차분법을 이용한 압축기 익렬유동 해석)

  • 권창오;송동주;강신형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.653-661
    • /
    • 1994
  • In this paper the CSCM type upwind flux difference splitting Navier-Stokes method has been applied to study the ARL-SL19 supersonic/transonic compressor cascade flow. H-type grid was chosen for its simplicity in applying cyclic tridiagonal matrix algorithm along with conventional slip/no-slip boundary conditions. The thin-layer algebraic model of Baldwin-Lomax was employed for the calculation of turbulent flows. The test case inlet Mach No. was 1.612 and inlet/exit pressure ratio($P_2/P_1$) was 2.15. The results were compared with experimental results from current method were compared well in suction surface with the experiments and other computational results; however, not well in pressure surface. It might be due to the complex flowfields such as shock/boundary layer interaction, turbulence, and flow separation, etc. In the future, a proper turbulence modelling and adaptive grid system will be studied to improve the solution quality.

Numerical Study on Three-Dimensional Endwall Flow Characteristics within a Turbine Cascade Passage (터빈익렬내의 3차원 끝벽유동 특성에 대한 수치해석적 연구(8권1호 게재논문중 그림정정))

  • Myong Hyon Kook
    • Journal of computational fluids engineering
    • /
    • v.8 no.2
    • /
    • pp.49-56
    • /
    • 2003
  • Three-dimensional endwall flow within a linear cascade passage of high performance turbine blade is simulated with a 3-D Navier-Stokes CFD code (MOSA3D), which is based on body-fitted coordinate system, pressure-correction and finite volume method. The endwall flow characteristics, including the development and generation of horseshoe vortex, passage vortex, etc. are clearly simulated, consistent with the generally known tendency. The effects of both turbulence model and convective differencing scheme on the prediction performance of endwall flow are systematically analyzed in the present paper. The convective scheme is found to have stronger effect than the turbulence model on the prediction performance of endwall flow. The present simulation result also indicates that the suction leg of the horseshoe vortex continues on the suction side until it reaches the trailing edge.

Speed Sign Recognition Using Sequential Cascade AdaBoost Classifier with Color Features

  • Kwon, Oh-Seol
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.185-190
    • /
    • 2019
  • For future autonomous cars, it is necessary to recognize various surrounding environments such as lanes, traffic lights, and vehicles. This paper presents a method of speed sign recognition from a single image in automatic driving assistance systems. The detection step with the proposed method emphasizes the color attributes in modified YUV color space because speed sign area is affected by color. The proposed method is further improved by extracting the digits from the highlighted circle region. A sequential cascade AdaBoost classifier is then used in the recognition step for real-time processing. Experimental results show the performance of the proposed algorithm is superior to that of conventional algorithms for various speed signs and real-world conditions.

Numerical Study on Three-Dimensional Endwall Flow Characteristics within a Turbine Cascade Passage (터빈익렬내의 3차원 끝벽유동 특성에 대한 수치해석적 연구)

  • Myong Hyon Kook
    • Journal of computational fluids engineering
    • /
    • v.8 no.1
    • /
    • pp.8-15
    • /
    • 2003
  • Three-dimensional endwall flow within a linear cascade passage of high performance turbine blade is simulated with a 3-D Wavier-Stokes CFD code (MOSA3D), which is based on body-fitted coordinate system, pressure-correction and finite volume method. The endwall flow characteristics, including the development and generation of horseshoe vortex, passage vortex, etc. are clearly simulated, consistent with the generally known tendency. The effects of both turbulence model and convective differencing scheme on the prediction performance of endwall flow are systematically analyzed in the present paper. The convective scheme is found to have stronger effect than the turbulence model on the prediction performance of endwall flow. The present simulation result also indicates that the suction leg of the horseshoe vortex continues on the suction side until it reaches the trailing edge.

An Experimental Study on the Flow Characteristics ofa Supersonic Turbine Cascade as Pressure Ratio

  • Cho, Jong-Jae;Jeong, Soo-In;Kim, Kui-Soon;Lee, Eun-Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.2
    • /
    • pp.9-17
    • /
    • 2004
  • In this paper, a small supersonic wind tunnel was designed and built to studythe flow characteristics of a supersonic impulse turbine cascade by experiment. Theflow was visualized by means of a single pass Schlieren system. The supersoniccascade with 3-dimensional supersonic nozzle was tested over a wide range ofpressure ratio. Highly complicated flow patterns including shocks, nozzle-cascadeinteraction and shock boundary layer interactions were observed.

An Experimental Investigation of the Heat Transfer Characteristics on the Endwall Surface Within the Plane Turbine Cascade (선형 터빈케스케이드 끝벽의 열전달 특성에 관한 연구)

  • 양장식;나종문;이기백
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2386-2398
    • /
    • 1995
  • The paper describes the results of an experimental investigation of the heat transfer rate on the endwall surface within the plane turbine cascade passage and includes the effect of the heat transfer for the two different boundary layer thicknesses and Reynolds numbers. The limiting streamlines on the endwall surface have been visualized by the oil film method in order to compare with the endwall heat transfer. The hue-capturing method using the termochromatic liquid crystals with great spatial resolution has been used to provide the local distribution of the endwall heat transfer coefficients. Because the detailed contours of the local heat transfer coefficients over the entire endwall can be obtained from the hue-capturing method, it has been possible to obtain information on the endwall heat transfer within the plane turbine cascade passage from these heat transfer contours.

Classification Performance Comparison of Inductive Learning Methods : The Case of Corporate Credit Rating (귀납적 학습방법들의 분류성능 비교 : 기업신용평가의 경우)

  • 이상호;지원철
    • Journal of Intelligence and Information Systems
    • /
    • v.4 no.2
    • /
    • pp.1-21
    • /
    • 1998
  • 귀납적 학습방법들의 분류성능을 비교 평가하기 위하여 대표적 분류문제의 하나인 신용평가 문제를 사용하였다. 분류기로서 사용된 귀납적 학습방법론들은 통계학의 다변량 판별분석(MDA), 기계학습 분야의 C4.5, 신경망의 다계층 퍼셉트론(MLP) 및 Cascade Correlation Network(CCN)의 4 가지이며, 학습자료로는 국내 3개 신용평가기관이 발표한 신용등급 및 공포된 재무제표를 사용하였다. 신용등급 예측의 정확도에 의한 분류성능을 평가하였는데 연도별 평가와 시계열 평가의 두 가지를 실시하였다. Cascade Correlation Network이 가장 좋은 분류성능을 보였지만 4가지 분류기들 사이에 통계적으로 유의한 차이는 발견되지 않았다. 이는 사용된 학습자료가 갖는 한계로 인한 것으로 추정되지만, 성능평가 과정에 있어 학습자료의 전처리 과정이 분류성과의 제고에 매우 유효함이 입증되었다.

  • PDF

An Experimental Study on Energy Losses in Steam Turbine Cascade Flow (증기터빈 익렬유동의 에너지손실에 관한 실험적 연구)

  • ;;Ahn, Hyung-Joon;Lee, Kwon-Hee
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.3022-3030
    • /
    • 1995
  • The irreversibility of condensation process in the supersonic flow of steam turbine cascade causes the entropy to increase and the total pressure loss to be generated. In the present study, in order to investigate the moist air flow in two dimensional steam turbine cascade made as the configuration of the last stage tip section of the actual steam turbine moving blade, the static and total pressures along suction side of the blade are measured by pressure taps and Pitot tube. The flow field is visualized by a Schlieren system. The effects of stagnation temperature and the degree of supersaturation on energy loss and entropy change in the flow are clearly identified.

A Video Smoke Detection Algorithm Based on Cascade Classification and Deep Learning

  • Nguyen, Manh Dung;Kim, Dongkeun;Ro, Soonghwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.6018-6033
    • /
    • 2018
  • Fires are a common cause of catastrophic personal injuries and devastating property damage. Every year, many fires occur and threaten human lives and property around the world. Providing early important sign for early fire detection, and therefore the detection of smoke is always the first step in fire-alarm systems. In this paper we propose an automatic smoke detection system built on camera surveillance and image processing technologies. The key features used in our algorithm are to detect and track smoke as moving objects and distinguish smoke from non-smoke objects using a convolutional neural network (CNN) model for cascade classification. The results of our experiment, in comparison with those of some earlier studies, show that the proposed algorithm is very effective not only in detecting smoke, but also in reducing false positives.

Inverse Filtering for a Modelling Channel Filter (모델화 채널필터에 대한 인버스필터링)

  • 김성호;주창복
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.17-20
    • /
    • 2000
  • In a digital communication system, the transmission channel may introduce error into the digital signal being transmitted. It would be useful if a process could be devised so that the error could be removed in order to recover the transmitted digital signal. We design a corrective filter that is inverse filter, which will generate an output signal identical to the input signal. in order for two systems connected in cascade to produce an output which is identical to the input signal, the over-all unit sample response of the cascade connection must be a unit sample function.

  • PDF