• Title/Summary/Keyword: Cascade Theory

Search Result 40, Processing Time 0.022 seconds

The Flow Analysis of Supercavitating Cascade by Nonlinear Theory (비선형이론에 의한 Supercavitation 익렬의 유동해석)

  • Pak, Ee-Tong;Hwang, Yoon
    • Solar Energy
    • /
    • v.17 no.1
    • /
    • pp.35-46
    • /
    • 1997
  • In this study comparison of experiment results with the computed results of linear theory and nonlinear theory using singularity method was obtainable. Specially singularity points like sources and vortexes on hydrofoil and freestreamline were distributed to analyze two dimensional flow field of supercavitating cascade using nonlinear theory, and governing equations of flow field were derived and hydraulic characteristics of cascade were calculated by numerical analysis of the governing equations. The results compared linear theory and nonlinear theory with the experiment results of the study are as follows: The tolerances of nonlinear theory were larger than those of linear theory in case of ${\alpha}<10^{\circ}$. Moreover the computational range of attack angles could be expanded from ${\alpha}=10^{\circ}$ to ${\alpha}=25^{\circ}$, the flow field of supercavitating cascade could be analyzed in the condition which the wake thickness and the length of cavity are a variable. The shapes of cavity were changed sensitively according to various variable such as attack angles, pitches and wake thickness, and the pressure distribution of hydrofoil surface was identical almost disregarding wake thickness but changed largely according to attack angle and the length of cavity. Lift coefficient and drag coefficient were reduced according to increasing of wake thickness but the influences of wake thickness were very little in the situation of small pitch and long cavity.

  • PDF

The Flow Analysis of Supercavitating Cascade by Linear Theory (선형이론에 의한 Supercavitation 익렬의 유동해석)

  • Pak, Ee-Tong;Hwang, Yoon
    • Solar Energy
    • /
    • v.16 no.2
    • /
    • pp.79-86
    • /
    • 1996
  • In order to reduce damages due to cavitation effects and to improve performance of fluid machinery, supercavitation around the cascade and the hydraulic characteristics of supercavitating cascade must be analyzed accurately. And the study on the effects of cavitation on fluid machinery and analysis on the performances of supercavitating hydrofoil through various elements governing flow field are critically important. In this study comparison of experiment results with the computed results of linear theory using singularity method was obtainable. Specially singularity points like sources and vortexes on hydrofoil and freestreamline were distributed to analyze two dimensional flow field of supercavitating cascade, and governing equations of flow field were derived and hydraulic characteristics of cascade were calculated by numerical analysis of the governing equations.

  • PDF

Aerodynamic Design of the Axial Fan (축류 송퐁기의 공력학적 설계)

  • Sohn, Sang-Bum;Joo, Won-Gu;Cho, Kang-Rae;Nam, Hyung-Baik;Yoon, In-Kyu;Nam, Leem-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.64-69
    • /
    • 1998
  • In this study, a preliminary design method of the axial fan was systematically established based on the two-dimensional cascade theory. Flow deviation, lift coefficient, distribution of velocity and pressure coefficient on blade surfaces were predicted by an inviscid theory of Martensen method, which was also applied to select an airfoil of required performance in the present design process. The aerodynamic performance of designed blades can be predicted quickly and reasonably by using the through-flow calculation method in the preliminary design process. It would be recommendable to adopt three-dimensional viscous flow calculation at the final design refinement stage.

  • PDF

The response of a blade row to a three-dimensional turbulent gust

  • Wei, Dingbing;Kim, Dae-Hwan;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.74-75
    • /
    • 2010
  • Inflow broadband noise is generated when turbulence in the rotor wakes impinges on the downstream stator vanes. In this paper a three-dimensional model is developed to investigate the broadband noise due to turbulence-cascade interaction. In the newly-developed model, we consider the effects of incident turbulent gust component in span-wise direction on the inflow broadband noise. The quasi-three-dimensional theory is deduced based on the tonal analytic theory of Smith (1972) and two-dimensional broadband noise generalization by Cheong et al. (2006; 2009). Extending the modified LINSUB code, quasi-three-dimensional computational results are presented. Finally, we compare these computational results with time-domain results to validate the theory.

  • PDF

Aerodynamic Design of the Axial Fan (축류 송풍기의 공력학적 설계)

  • Sohn, Sang-Bum;Joo, Won-Gu;Cho, Kang-Rae;Nam, Hyung-Baik;Yoon, In-Kyu;Nam, Leem-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.22-28
    • /
    • 1999
  • In this study, a preliminary design method of the axial fan was systematically established based on the two-dimensional cascade theory. Flow deviation, lift coefficient, distribution of velocity and pressure coefficient on blade surfaces were predicted by an inviscid flow theory of Martensen method, which was also applied to select an airfoil for required performance in the present design process. The aerodynamic performance of designed blades can be predicted quickly and reasonably by using the through-flow calculation method in the preliminary design process. It would be recommendable to adopt three-dimensional viscous flow calculation at the final design refinement stage.

  • PDF

Analysis of Flow Characteristics of Supercavitating Cascade (수퍼캐비테이션 익열의 유동특성 해석)

  • 이명호;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.803-810
    • /
    • 1992
  • With increases in the rotational speed of hydraulic machine, studies on the hydrodynamic characteristics of supercavitating cascade are important on the view of flow analysis and design of fluid machinery. In the present paper, the complex functions of nonlinear theory corresponding to the flow of supercavitating cascade can be obtained by distributing singulary singulary points such as sources, vortexes and doublets on hydrofoil and free streamline. The numerical calculations on the closed wake model and semi-closed wake model are carried out in order to show the flow characteristics around the supecavitating cascade with finite with finite cavity length. As the result of this study, the flow characteristics such as lift, drag and cavitation coefficients are predicted by the flow conditions of supercavitating cascade in the fluid machinery.

Improvement of OADM Characteristics Using MZI with Cascade FBG (다중 FBG를 이용한 OADM의 특성 및 향상에 관한 연구)

  • Jang, Woo-Soon;Jung, Jin-Ho
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.131-135
    • /
    • 2003
  • WDM(Wavelength division multiplexing) light wave communication system requires MUX/DeMUX and optical filter OADM can be used to extract and add the specific wavelength channel from the transmission line. In this paper, we propose the OADM based on MZI and cascade FBG. It is able to minimize system and reduce sidelobe. So, we have considered MZI structure and 3dB coupler. Using the coupled mode theory. We also analyze out characteristics of OADM and experiment. From results obtained by experiment and computer. Simulation, the proposed OADM with cascade FBG works well. we hope that the obtained result in this paper con be used as the data to design the OADM with cascade FBG.

  • PDF

Performance prediction of mixed-flow pumps (혼류 펌프의 성능 해석)

  • O, Hyeong-U;Yun, Ui-Su;Jeong, Myeong-Gyun;Ha, Jin-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.70-78
    • /
    • 1998
  • The present study has tested semi-empirical loss models for a reliable performance prediction of mixed-flow pumps with four different specific speeds. In order to improve the predictive capabilities, this paper recommends a new internal loss model and a modified parasitic loss model. The prediction method presented here is also compared with that based on two-dimensional cascade theory. Predicted performance curves by the proposed set of loss models agree fairly well with experimental data for a variety of mixed-flow pumps in the normal operating range, but further studies considering 'droop-like' head performance characteristic due to flow reversal in mixed-flow impellers at low flow range near shut-off head are needed.

Prediction of Cascade Performance of Circular-Arc Blades with CFD

  • Suzuki, Masami;Setoguchi, Toshiaki;Kaneko, Kenji
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.4
    • /
    • pp.360-366
    • /
    • 2011
  • Thin circular-arc blade is often used as a guide vane, a deflecting vane, or a rotating blade of low pressure axial-flow turbomachine because of its easy manufacture. Ordinary design of the blade elements of these machines is done by use of the carpet diagrams for a cascade of circular-arc blades. However, the application of the carpet diagrams is limited to relatively low cambered blade operating under optimum inlet flow conditions. In order to extend the applicable range, additional design data is necessary. Computational fluid dynamics (CFD) is a promising method to get these data. In this paper, two-dimensonal cascade performances of circular-arc blade are widely analyzed with CFD. The results have been compared with the results of experiment and potential theory, and useful information has been obtained. Turning angle and total pressure loss coefficients are satisfactorily predicted for lowly cambered blade. For high camber angle of $67^{\circ}$, the CFD results agree with experiment for the angle of attack less than that for shockless inlet condition.

Analysis of Two-Dimensional Flow around Blades with Large Deflection in Axial Turbomachine (전향도가 큰 축류터보기계의 블레이드 주위의 유동해석)

  • 원승호;손병진;최상경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.229-240
    • /
    • 1991
  • The large camber angle theory of turbomachine blade of compressor has been developed recently for the two-dimensional flow by Hawthorn, et al. However, in the above theory it was assumed that the fluid was incompressible and inviscid, and the blades had no thickness. In this study, the flow in a blade cascade being mounted in parallel fashion with blade of arbitrary thickness is studied in order to determine the effects of the camber angle on the performance characteristic of the blade section under the consideration of compressibility and viscosity of fluid. The panel method is used for potential flow analysis. The flow in the boundary-layer is obtained by solving the integral boundary-layer structure through the laminar, transitional , and turbulent flow using the pressure field determined from the potential flow. And then the viscous-inviscid interaction scheme is used for interaction of these two flows. For the determination of the variation in the outlet fluid angle influenced by deviation in cascade flow, the superposition method which is used for single foil is introduced in this analysis. By the introduction of this method, the effects of the deviation on outlet fluid angle and the resulting fluid angle are made to adjust for oneself through the calculation. As the result of this study, the blade of large camber angle, large incidence angle, large pitch-chord ratio has large viscous and compressible effect than those of small camber angle. Lift force increase as camber angle increases, but above 60.deg. of camber angle, lift force decrease as camber angle increases. But drag force increases linearly with camber angle increases in the entire region.