• Title/Summary/Keyword: Cartilage engineering

Search Result 120, Processing Time 0.029 seconds

Chitosan-alginate Gel Modified Poly (L-Lactic-co-ε-Caprolactone) (PLCL) as a Scaffold for Cartilage Tissue Engineering (변형된 키토산 알지네이트 겔 poly (L-Lactic-co-ε-Caprolactone) 지지체의 연골 조직 재생 평가)

  • Sutradhar, Bibek Chandra;Hwang, Yawon;Choi, Seokhwa;Kim, Gonhyung
    • Journal of Veterinary Clinics
    • /
    • v.32 no.3
    • /
    • pp.224-230
    • /
    • 2015
  • This study was designed in the fabricated poly (L-Lactic-co-${\varepsilon}$-Caprolactone) (PLCL) scaffold using chitosan-alginate hydrogel, which would be more suitable to maintain the biological and physiological functions continuing three dimensional spatial organizations for chondrocytes. As a scaffold, hydrogels alone is weak at endure complex loading within the body. In this study, we made cell hybrid scaffold constructs with poly (L-Lactic-co-${\varepsilon}$-Caprolactone) (PLCL) scaffold and hydrogels to make a three-dimensional composition of cells and extracellular matrix, which would be a mimic of a native cartilage. Using a particle leaching technique with NaCl, we fabricated a highly-elastic scaffold from PLCL with 85% porosity and $300-500{\mu}m$ pore size. A mixture of bovine chondrocytes and chitosan-alginate gel was seeded and compared with alginate as a control on the PLCL scaffold. The cell maturation, proliferation, extracellular matrix synthesis, glycosaminoglycans (sGAG) production and collagen type-II expressions were better in chondrocytes seeded in chitosan-alginate hydrogel than in alginate only. These results indicate that chondrocytes with chitosan-alginate gel on PLCL scaffolds provide an appropriate biomimetic environment for cell proliferation and matrix synthesis, which could successfully be used for cartilage repair and regeneration.

Acceleration of Cell Proliferation and Gene Expression in Human Chondrosarcoma Cells Stimulated by Strong Pulse Magnetic Field

  • Shin, Sung Chul;Chung, Eui Ryong;Hwang, Do Guwn
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.14-20
    • /
    • 2013
  • For the treatment of osteoarthritis, pulsed electromagnetic field stimulus has been suggested as a useful therapeutic method in rehabilitative medicine. Most studies have been performed under low-frequency and low-energy to find out biological properties for stimulating chondrocyte with pulsed magnetic field. In this study, the effect of strong pulse magnetic field on the human chondrosarcoma cells (SW-1353) has been investigated by means of cell counting, morphologies, and gene expression of cartilage extracellular matrix genes. The SW-1353 cells were exposed under the field intensities of 270, 100, 55, 36, and 26 mTesla during 6 hours a day in 5 consecutive days. The pulse magnetic field with an LRC oscillating signal has the pulse width of 0.126 msec and stimulation period of 1 sec. For the 270 and 100 mTesla stimulation, the cell proliferation significantly increased in 21-24% as compared with the non-stimulated cells. Gene expression of cartilage extracellular matrix genes (ACAN, COMP and COL2A1) was assayed by quantitative real time-PCR method. The ACAN gene expression showed a significant brightness, which means the increase on gene expression, compared with the non-stimulated cells. Our results suggest that the strong pulse magnetic field stimulation can be utilized to accelerate cell proliferation and gene expression on human chondrosarcoma cells.

Culture of rabbit chondrocytes on the HA-agarose scaffold for artificial cartilage

  • Hong, Sung-Ran;Nguyen, Lan-Anh;Kwon, O-Hee;Shin, In-Soo;Kim, Soon-Nam;Man, Choong-Hong;Lee, Ki-Hong;Oh, Ho-Jung;Yoo, Si-Hyung;Kang, Hye-Na;Choi, Seoung-Eun;Lee, Seok-Ho;Hong, Seoung-Hwa;Lee, Young-Moo
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.366.1-366.1
    • /
    • 2002
  • Emerging medical technologies for effective and lasting repair of articular cartilage include delivery of cells or cell-seeded scaffolds to a defective site to initiate de novo tissue regeneration. In this respect. the availability of an appropriate biomaterial scaffold is crucial to allow chondrocyte growth and cartilaginous matrix deposition in a three-dimensional geometry. Hyaluronic acid (HA) molecules are anchored to the chondrocyte membrane via receptors, such as CD44. (omitted)

  • PDF

Effect of PLGA Scaffold Containing Demineralized Bone Solution for Articular Cartilage Tissue Engineering: In Vitro Test (조직공학적 연골재생을 위한 In Vitro 환경에서의 탈미네랄화 골분용액을 함유한 PLGA 지지체의 효과)

  • Ahn, Woo-Young;Kim, Hye-Lin;Song, Jeong-Eun;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.499-504
    • /
    • 2011
  • Articular cartilage has an intrinsic difficulty in recovering damages, which requires its tissue engineering treatment. Demineralized bone particle (DBP) contains various bioactive molecules. It is widely used biomaterials in the field of tissue engineering. We developed the synthetic/natural hybrid scaffolds with poly(lactide-co-glycolide) (PLGA) and solution of DBP. The chondrocytes were seeded on the PLGA-DBP scaffolds and MTT assay, morphological observation, biological assay for collagen, sGAG, and RT-PCR were performed to analyze the effect of the DBP on cell viability and extracellular matrix secretion. In SEM observation, we observed that PLGA-DBP scaffolds had uniform porosity. As MTT assay showed scaffolds containing DB solution had higher cell viability then only PLGA scaffolds. The PLGA-DBP scaffolds had better ECM production than PLGA scaffold. It was proven by the higher specific mRNA expression in the PLGA-DBP scaffold than that in PLGA scaffold. These results indicated that PLGA-DBP scaffolds might serve as potential cell delivery vehicles and structural bases for in vitro tissue engineered articular cartilage.

Usefullness of the Vibration Pick-Up in Detection of Pitch for Synchronization of Laryngeal Stroboscopy (후두 스트로보스코프 검사의 신호 동기화를 위한 진동 검출기의 유용성)

  • Lee, Jin-Choon;Lee, Byung-Joo;Wang, Soo-Geun;Roh, Jung-Hoon;Kwon, Sun-Bok;Jo, Cheol-Woo
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.18 no.1
    • /
    • pp.26-32
    • /
    • 2007
  • Objective and Background: Laryngeal stroboscope is an useful equipment in evaluation of vocal cord vibration and in early detection of mucosal lesion including invasive cancer of the vocal cord. Recently Lee et al. (2006) developed portable stroboscope using voice as synchronization signal. It has been frequently impaired ability to synchronize the flashes even in normal female. Authors tried to investigate various methods including vibration pick-up, microphone, laryngeal microphone, and contact microphone for development of simple and accurate method like electroglottograph signal. The purpose of this study was to estimate wheher the vibration pick-up is available and is consistent with the signal of EGG. Subjects and Methods: Authors compared the signals between EGG and noncontact method such as voice, contact methods including vibration pick-up, laryngeal microphone, and contact microphone in normal twenty adults (male 10 and female 10). The number of peak in one cycle was compared with the number of the peak in EGG, and the percent of phase difference in the peak was compared with EGG Also, authors tried to investigate which site of vibration pick-up was most effective for synchronization of stobo flashes. Three site including anterior neck below the cricoid cartilage, thyroid ala, and suprahyoid region were analysed. Results: Among various methods for synchronization of strobo flashes, vibration pick-up was most effective method in peak detection. And anterior neck below cricoid cartilage was the most available site of the vibration pick-up. Conclusion: Authors suggest that vibration pick-up is most available and effective method for synchronization of strobo flashes.

  • PDF

Biomaterials-assisted spheroid engineering for regenerative therapy

  • Lee, Na-Hyun;Bayaraa, Oyunchimeg;Zechu, Zhou;Kim, Hye Sung
    • BMB Reports
    • /
    • v.54 no.7
    • /
    • pp.356-367
    • /
    • 2021
  • Cell-based therapy is a promising approach in the field of regenerative medicine. As cells are formed into spheroids, their survival, functions, and engraftment in the transplanted site are significantly improved compared to single cell transplantation. To improve the therapeutic effect of cell spheroids even further, various biomaterials (e.g., nano- or microparticles, fibers, and hydrogels) have been developed for spheroid engineering. These biomaterials not only can control the overall spheroid formation (e.g., size, shape, aggregation speed, and degree of compaction), but also can regulate cell-to-cell and cell-to-matrix interactions in spheroids. Therefore, cell spheroids in synergy with biomaterials have recently emerged for cell-based regenerative therapy. Biomaterials-assisted spheroid engineering has been extensively studied for regeneration of bone or/and cartilage defects, critical limb ischemia, and myocardial infarction. Furthermore, it has been expanded to pancreas islets and hair follicle transplantation. This paper comprehensively reviews biomaterials-assisted spheroid engineering for regenerative therapy.

Synthesis and Biocompatibility of the Hydroxyapatite Ceramic Composites from Tuna Bone(II) - The Sintering Properties of Hydroxyapatite Treated with Wet Milling Process - (참치 뼈를 이용한 Hydroxyapatite 세라믹 복합체의 합성 및 생체 친화성(제2보)-습식법에 의한 Hydroxyapatite 소결체의 특성-)

  • Kim, Se-Kwon;Choi, Jin-Sam;Lee, Chang-Kook;Byun, Hee-Guk;Jeon, You-Jin;Lee, Eung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.1000-1005
    • /
    • 1997
  • The properties of ceramics by solid-state reaction with hydroxyapatite[$Ca_{10}(PO_4)_6(OH)_2$], which was isolated from tuna bone by wet milling process were investigated. The bulk density $2.93g/cm^3$ at $1350^{\circ}C$ was close to the calculated density $3.21g/cm^3$. On X-ray measurements, the major phases were identified as hydroxyapatite at below $1300^{\circ}C$, but the whitlockite [$Ca_3(PO_4)_2$] phases were appeared due to a decomposition of hydroxyapatite with temperature. The microstructures of sintering specimens were shown as small closed pores between grain boundaries. The mean bending strength of the sintered hydroxyapatite by solid-state reaction is about 58 MPa and this value is higher than that of the articular cartilage maximum strength, 40MPa.

  • PDF

Injectable TGF-beta 3-conjugated hyaluronic acid hydrogel for cartilage regeneration

  • Ko, Ki Seong;Lee, Jung Seok;Park, Kyung Min;Lee, Yunki;Oh, Dong Hwan;Son, Joo Young;Kwon, Oh Hee;Eom, Min Yong;Park, Ki Dong
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.1
    • /
    • pp.23-32
    • /
    • 2015
  • Facile immobilization of growth factors in hyaluronic acid (HA) hydrogels using dual enzymes is reported in the paper. The hydrogels were formed by using horseradish peroxidase (HRP) and hydrogen peroxide ($H_2O_2$) and transforming growth factor-${\beta}3$ (TGF-${\beta}3$) was covalently conjugated on the hydrogels in situ using tyrosinase (Ty) without any modifications. For the preparation of hydrogels, HA was grafted with poly(ethylene glycol) (PEG), which was modified with a tyrosine. The gelation times of the HA hydrogels were ranging from 415 to 17 s and the storage moduli was dependent on the concentration of $H_2O_2$ and Ty (470-1600 Pa). A native TGF-${\beta}3$ (200 ng/mL) was readily encapsulated in the HA hydrogels and 17% of the TGF-${\beta}3$ was released over 1 month at the Ty concentration of 0.5 KU/mL, while the release was faster when 0.3 KU/mL of Ty was used for the encapsulation (27%). It can be suggested that the growth factors resident in the hydrogels for a long period of time may lead cells proliferating and differentiating, whereas the growth factors that are initially released from the hydrogels can induce the ingrowth of cells into the matrices. Therefore, the dual enzymatic methods as facile gel forming and loading of various native growth factors or therapeutic proteins could be highly promising for tissue regenerative medicines.

Chondrogenic Properties of Human Periosteum-derived Progenitor Cells (PDPCs) Embedded in a Thermoreversible Gelation Polymer (TGP)

  • Choi, Yang-Soo;Lim, Sang-Min;Shin, Hyun-Chong;Lee, Chang-Woo;Kim, Dong-Il
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.550-552
    • /
    • 2006
  • Periosteum-derived progenitor cells (PDPCs) were isolated using a fluorescence-activated cell sorter and their chondrogenic potential in biomaterials was investigated for the treatment of defective articular cartilage as a cell therapy. The chondrogenesis of PDPCs was conducted in a thermoreversible gelation polymer (TGP), which is a block copolymer composed of temperature-responsive polymer blocks such as poly(N-isopropylacrylamide) and of hydrophilic polymer blocks such as polyethylene oxide, and a defined medium that contained transforming growth $factor-{\beta}3\;(TGF-{\beta}3)$. The PDPCs exhibited chondrogenic potential when cultured in TGP. As the PDPCs-TGP is an acceptable biocompatible complex appropriate for injection into humans, this product might be readily applied to minimize invasion in a defected knee.