• 제목/요약/키워드: Cartesian grid method

검색결과 76건 처리시간 0.03초

직교 격자계 기반 유동해석기법을 이용한 파랑 중 해양구조물의 운동 해석 (Numerical Study on Wave-induced Motion of Offshore Structures Using Cartesian-grid based Flow Simulation Method)

  • 남보우;김용환;양경규;홍사영;성홍근
    • 한국해양공학회지
    • /
    • 제26권6호
    • /
    • pp.7-13
    • /
    • 2012
  • This paper presents a numerical study of the wave loads acting on offshore structures using a Cartesian-grid-based flow simulation method. Finite volume discretization with a volume-of-fluid (VOF) method is adopted to solve two-phase Navier-Stokes equations. Among the many variations of the VOF method, the CICSAM scheme is applied. The body boundary conditions are satisfied using a porosity function, and wave generation is carried out by using transient (wave or damping) zone approaches. In order to validate the present numerical method, three different basic offshore structures, including a sphere, Pinkster barge, and Wigley model, are numerically investigated. First, diffraction and radiation problems are solved using the present numerical method. The wave exciting and drift forces from the diffraction problems are compared with potential-based solutions. The added mass and wave damping forces from the radiation problems are also compared with the potential results. Next, the wave-induced motion responses of the structures are calculated and compared with the existing experimental data. The comparison results are fairly good, showing the validity of the present numerical method.

HCIB 법을 이용한 변형하는 평판 주위의 3차원 유동해석 (COMPUTATIONS ON FLOW FIELDS AROUND A 3D FLAPPING PLATE USING THE HYBRID CARTESIAN/IMMERSED BOUNDARY METHOD)

  • 신상묵
    • 한국전산유체공학회지
    • /
    • 제12권1호
    • /
    • pp.1-8
    • /
    • 2007
  • A code is developed using the hybrid Cartesian/immersed boundary method and it is applied to simulate flows around a three-dimensional deforming body. A new criterion is suggested to distribute the immersed boundary nodes based on edges crossing a body boundary. Velocities are reconstructed at the immersed boundary nodes using the interpolation along a local normal line to the boundary. Reconstruction of the pressure at the immersed boundary node is avoided using the hybrid staggered/non-staggered grid method. The developed code is validated through comparisons with other experimental and numerical results for the velocity profiles around a circular cylinder under the forced in-line oscillation and the pressure coefficient distribution on a sphere. The code is applied to simulate the flow fields around a plate whose tail is periodically flapping under a translation. The effects of the velocity and acceleration due to the deformation on the periodic shedding of pairs of tip vortices are investigated.

Verification of multilevel octree grid algorithm of SN transport calculation with the Balakovo-3 VVER-1000 neutron dosimetry benchmark

  • Cong Liu;Bin Zhang;Junxia Wei;Shuang Tan
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.756-768
    • /
    • 2023
  • Neutron transport calculations are extremely challenging due to the high computational cost of large and complex problems. A multilevel octree grid algorithm (MLTG) of discrete ordinates method was developed to improve the modeling accuracy and simulation efficiency on 3-D Cartesian grids. The Balakovo-3 VVER-1000 neutron dosimetry benchmark is calculated to verify and validate this numerical technique. A simplified S2 synthetic acceleration is used in the MLTG calculation method to improve the convergence of the source iterations. For the triangularly arranged fuel pins, we adopt a source projection algorithm to generate pin-by-pin source distributions of hexagonal assemblies. MLTG provides accurate geometric modeling and flexible fixed source description at a lower cost than traditional Cartesian grids. The total number of meshes is reduced to 1.9 million from the initial 9.5 million for the Balakovo-3 model. The numerical comparisons show that the MLTG results are in satisfactory agreement with the conventional SN method and experimental data, within the root-mean-square errors of about 4% and 10%, respectively. Compared to uniform fine meshing, approximately 70% of the computational cost can be saved using the MLTG algorithm for the Balakovo-3 computational model.

직교격자를 이용한 단순 세장 구조물의 와유기 진동 해석 (Vortex-Induced Vibration of Simple Slender Structure Using Cartesian Mesh)

  • 한명륜;안형택
    • 대한조선학회논문집
    • /
    • 제48권3호
    • /
    • pp.260-266
    • /
    • 2011
  • For long slender offshore structures, such as cables and pipe lines, their interaction with surrounding fluid flow becomes an important issue for global design of ocean systems. We employ a long circular cylinder as a representative case of slender offshore structure. A flexibly mounted cylinder in cross-flow generates complex vortex shedding and results in oscillation of the structure. In this paper, flow behind a circular cylinder at Re=100 is simulated. The vortex shedding pattern and flow induced motion are examined in the cross flow configuration as well as with various yaw-angled configurations. The "Lock-in" phenomenon is also observed when reduced velocity is approximately 4.0. The MAC Grid system, which is the typical grid system for Cartesian mesh and pressure correction methods, are used for solving the incompressible Navier-Stokes equations. Predictor/Corrector method is applied for obtaining a non-linear response of structure at the flexibly mounted. The existance and motion of the body is represented by the immersed boundary technique.

반사경 내부 유동의 초점 형성에 관한 고해상도 수치 해석 (A HIGH-RESOLUTION NUMERICAL ANALYSIS OF SHOCK FOCUSING IN CONCAVE REFLECTORS)

  • 정연규;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.170-175
    • /
    • 2009
  • Shock focusing is related with explosive release of shock wave energy on a narrow spot in a short duration of time triggering a spontaneous high pressure near the focal point. It is well known that reflection of planar incident shock wave from the metallic concave mirror such as ellipsoidal, paraboloidal or hemispherical cavities will focus on a focal point. We intend to improve the computational results using a wave propagation algorithm and to resolve the mushroom-like structure. For computation of the concave cavity flow, it is not easy to use a single-block mesh because of the many singular points in geometry and coordinates. We have employed a uniform Cartesian-grid method for the wave propagation algorithm.

  • PDF

효율적인 해양구조물 유동 해석을 위한 직교좌표계 기반의 코드 개발 - AMR, VOF, IBM, VIV, LES의 통합 (Development of a Cartesian-based Code for Effective Simulation of Flow Around a Marine Structure - Integration of AMR, VOF, IBM, VIV, LES)

  • 이경준;양경수
    • 대한조선학회논문집
    • /
    • 제51권5호
    • /
    • pp.409-418
    • /
    • 2014
  • Simulation of flow past a complex marine structure requires a fine resolution in the vicinity of the structure, whereas a coarse resolution is enough far away from it. Therefore, a lot of grid cells may be wasted, when a simple Cartesian grid system is used for an Immersed Boundary Method (IBM). To alleviate this problems while maintaining the Cartesian frame work, we adopted an Adaptive Mesh Refinement (AMR) scheme where the grid system dynamically and locally refines as needed. In this study, We implemented a moving IBM and an AMR technique in our basic 3D incompressible Navier-Stokes solver. A Volume Of Fluid (VOF) method was used to effectively treat the free surface, and a recently developed Lagrangian Dynamic Subgrid-scale Model (LDSM) was incorporated in the code for accurate turbulence modeling. To capture vortex induced vibration accurately, the equation for the structure movement and the governing equations for fluid flow were solved at the same time implicitly. Also, We have developed an interface by using AutoLISP, which can properly distribute marker particles for IBM, compute the geometrical information of the object, and transfer it to the solver for the main simulation. To verify our numerical methodology, our results were compared with other authors' numerical and experimental results for the benchmark problems, revealing excellent agreement. Using the verified code, we investigated the following cases. (1) simulating flow around a floating sphere. (2) simulating flow past a marine structure.

3차원 부유체의 유체-물체 연성해석 (FLUID-BODY INTERACTION ANALYSIS OF FLOATING BODY IN THREE DIMENSIONS)

  • 고광수;안형택
    • 한국전산유체공학회지
    • /
    • 제20권2호
    • /
    • pp.103-108
    • /
    • 2015
  • Fluid-body interaction analysis of floating body with six degree-of-freedom motion is presented. In this study, three-dimensional incompressible Navier-Stokes equations are employed as a governing equation. The numerical method is based on a finite-volume approach on a cartesian grid together with a fractional-step method. To represent the body motion, the immersed boundary method for direct forcing is employed. In order to simulate the coupled six degree-of-freedom motion, Euler's equations based on rigid body dynamics are utilized. To represent the complex body shape, level-set based algorithm is utilized. In order to describe the free surface motion, the volume of fluid method utilizing the tangent of hyperbola for interface capturing scheme is employed. This study showed three different continuums(air, water and body) are simultaneously simulated by newly developed code. To demonstrate the applicability of the current approach, two different problems(dam-breaking with stationary obstacle and water entry) are simulated and all results are validated.

A Simple Volume Tracking Method For Compressible Two-Phase Flow

  • SHYUE KEH-MING
    • 천문학회지
    • /
    • 제34권4호
    • /
    • pp.237-241
    • /
    • 2001
  • Our goal is to present a simple volume-of-fluid type interface-tracking algorithm to compressible two-phase flow in two space dimensions. The algorithm uses a uniform underlying Cartesian grid with some cells cut by the tracked interfaces into two subcells. A volume-moving procedure that consists of two basic steps: (1) the update of volume fractions in each grid cell at the end of the time step, and (2) the reconstruction of interfaces from discrete set of volume fractions, is employed to follow the dynamical behavior of the interface motion. As in the previous work with a surface-tracking procedure for general front tracking (LeVeque & Shyue 1995, 1996), a high resolution finite volume method is then applied on the resulting slightly nonuniform grid to update all the cell values, while the stability of the method is maintained by using a large time step wave propagation approach even in the presence of small cells and the use of a time step with respect to the uniform grid cells. A sample preliminary numerical result for an underwater explosion problem is shown to demonstrate the feasibility of the algorithm for practical problems.

  • PDF

중첩격자계와 접합격자계를 이용한 적응격자 기법 (A Grid Adaptation Method Using the Chimera and Patched Grid Systems)

  • 김대희;권장혁
    • 한국항공우주학회지
    • /
    • 제33권10호
    • /
    • pp.17-25
    • /
    • 2005
  • 중첩격자계와 접합격자계를 이용한 적응격자 기법이 개발되었다. 유동장은 물체와 근접한 영역과 떨어진 영역으로 구분된다. 근접한 영역은 곡선 격자계로 채워지며 중첩격자기법으로 영역이 연결되고 떨어진 영역은 다양한 적응 단계를 가진 직교 격자계로 채워지며 접합격자기법으로 연결된다. 본 적응격자기법은 격자생성에 있어서의 유연성과 효과적인 격자적응 기능을 보여준다. 2차원 스토어 분리 해석을 포함하는 몇 가지 수치해석을 통해 본 적응격자기법의 성능을 검증하였다.

Hybrid Cartesian/Immersed Boundary 법을 이용한 2차원 변형날개 주위 점성유동 해석 (Numerical Simulation of a Viscous Flow Field Around a Deforming Foil Using the Hybrid Cartesian/Immersed Boundary Method)

  • 신상묵;김형태
    • 대한조선학회논문집
    • /
    • 제43권5호
    • /
    • pp.538-549
    • /
    • 2006
  • A code is developed to simulate a viscous flow field around a deformable body using the hybrid Cartesian/immersed boundary method. In this method, the immersed boundary(IB) nodes are defined near the body boundary then velocities at the IB nodes are reconstructed based on the interpolation along the normal direction to the body surface. A new method is suggested to define the IB nodes so that a closed fluid domain is guaranteed by a set of IB nodes and the method is applicable to a zero-thickness body such as a sail. To validate the developed code, the vorticity fields are compared with other recent calculations where a cylinder orbits and moves into its own wake. It is shown the code can handle a sharp trailing edge at Reynolds number of $10^5$ under moderate requirements on girds. Finally the developed code is applied to simulate the vortex shedding behind a deforming foil with flapping tail like a fish. It is shown that the acceleration of fluids near the flapping tail contributes to the generation of the thrust for propulsion.