DOI QR코드

DOI QR Code

Verification of multilevel octree grid algorithm of SN transport calculation with the Balakovo-3 VVER-1000 neutron dosimetry benchmark

  • Cong Liu (Institute of Applied Physics and Computational Mathematics) ;
  • Bin Zhang (School of Nuclear Science and Engineering, North China Electric Power University) ;
  • Junxia Wei (Institute of Applied Physics and Computational Mathematics) ;
  • Shuang Tan (Institute of Applied Physics and Computational Mathematics)
  • Received : 2022.02.13
  • Accepted : 2022.10.15
  • Published : 2023.02.25

Abstract

Neutron transport calculations are extremely challenging due to the high computational cost of large and complex problems. A multilevel octree grid algorithm (MLTG) of discrete ordinates method was developed to improve the modeling accuracy and simulation efficiency on 3-D Cartesian grids. The Balakovo-3 VVER-1000 neutron dosimetry benchmark is calculated to verify and validate this numerical technique. A simplified S2 synthetic acceleration is used in the MLTG calculation method to improve the convergence of the source iterations. For the triangularly arranged fuel pins, we adopt a source projection algorithm to generate pin-by-pin source distributions of hexagonal assemblies. MLTG provides accurate geometric modeling and flexible fixed source description at a lower cost than traditional Cartesian grids. The total number of meshes is reduced to 1.9 million from the initial 9.5 million for the Balakovo-3 model. The numerical comparisons show that the MLTG results are in satisfactory agreement with the conventional SN method and experimental data, within the root-mean-square errors of about 4% and 10%, respectively. Compared to uniform fine meshing, approximately 70% of the computational cost can be saved using the MLTG algorithm for the Balakovo-3 computational model.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (12102062 and 12205020). Liu would also like to thank Dr. Wenhua Ma at IAPCM for his help in using the CMake tool and compiling the program.

References

  1. P.K. Romano, N.E. Horelik, B.R. Herman, A.G. Nelson, B. Forget, K. Smith, OpenMC: a state-of-the-art Monte Carlo code for research and development, Ann. Nucl. Energy 82 (2015) 90-97, https://doi.org/10.1016/j.anucene.2014.07.048.
  2. J. Leppanen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, The Serpent Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Energy 82 (2015) 142-150, https://doi.org/10.1016/j.anucene.2014.08.024.
  3. R. Sanchez, Prospects in deterministic three-dimensional whole-core transport calculations, Nucl. Eng. Technol. 44 (2) (2012) 113-150, https://doi.org/10.5516/NET.01.2012.501.
  4. T.M. Evans, A.S. Stafford, R.N. Slaybaugh, K.T. Clarno, Denovo: a new threedimensional parallel discrete ordinates code in SCALE, Nucl. Technol. 171 (2) (2010) 171-200, https://doi.org/10.13182/NT171-171.
  5. W. Boyd, S. Shaner, L. Li, B. Forget, K. Smith, The OpenMOC method of characteristics neutral particle transport code, Ann. Nucl. Energy 68 (2014) 43-52, https://doi.org/10.1016/j.anucene.2013.12.012.
  6. D.R. Gaston, B. Forget, K.S. Smith, L.H. Harbour, G.K. Ridley, G.G. Giudicelli, Method of characteristics for 3D, full-core neutron transport on unstructured mesh, Nucl. Technol. 207 (7) (2021) 931-953, https://doi.org/10.1080/00295450.2021.1871995.
  7. T.A. Wareing, J.M. McGhee, J.E. Morel, S.D. Pautz, Discontinuous finite element SN methods on three-dimensional unstructured grids, Nucl. Sci. Eng. 138 (3) (2001) 256-268, https://doi.org/10.13182/NSE138-256.
  8. A.R. Owens, J.A. Welch, J. Kophazi, M.D. Eaton, Discontinuous isogeometric analysis methods for the first-order form of the neutron transport equation with discrete ordinate (SN) angular discretisation, J. Comput. Phys. 315 (2016) 501-535, https://doi.org/10.1016/j.jcp.2016.03.060.
  9. P. Kotiluoto, Fast tree multigrid transport application for the simplified P3 approximation, Nucl. Sci. Eng. 138 (3) (2001) 269-278, https://doi.org/10.13182/NSE01-A2213.
  10. E. Masiello, R. Lenain, W. Ford, 3D heterogeneous Cartesian cells for transportbased core simulations, Ann. Nucl. Energy 142 (2020), 107364, https://doi.org/10.1016/j.anucene.2020.107364.
  11. K.E. Royston, S.R. Johnson, T.M. Evans, S.W. Mosher, J. Naish, B. Kos, Application of the Denovo discrete ordinates radiation transport code to large-scale fusion neutronics, Fusion Sci. Technol. 74 (4) (2018) 303-314, https://doi.org/10.1080/15361055.2018.1504508.
  12. R. Orsi, H.B.Robinson-2 pressure vessel dosimetry benchmark: deterministic three-dimensional analysis with the TORT transport code, Nucl. Eng. Technol. 52 (2) (2019) 448-455, https://doi.org/10.1016/j.net.2019.07.025.
  13. L. Xu, H. Shen, J. Wei, L. Cao, Y. Zheng, Study of the PWR ex-core detector response simulation based on the 3D SN method, Ann. Nucl. Energy 139 (2020), 107223, https://doi.org/10.1016/j.anucene.2019.107223.
  14. S.A. Turner, Automatic mesh coarsening for discrete ordinates codes, in: International Conference on Mathematics and Computations (M&C '99), Madrid, Spain, September 27-30, 1999, 1999.
  15. R.S. Baker, A block adaptive mesh refinement algorithm for the neutral particle transport equation, Nucl. Sci. Eng. 141 (1) (2002) 1-12, https://doi.org/10.13182/NSE02-A2262.
  16. A. Haghighat, G.E. Sjoden, V.N. Kucukboyaci, Effectiveness of PENTRAN™'s unique numerics for simulation of the Kobayashi benchmarks, Prog. Nucl. Energy 39 (2) (2001) 191e206, https://doi.org/10.1016/S0149-1970(01)00012-9.
  17. J.I. Duo, Y.Y. Azmy, L.T. Zikatanov, A posteriori error estimator and AMR for discrete ordinates nodal transport methods, Ann. Nucl. Energy 36 (3) (2009) 268-273, https://doi.org/10.1016/j.anucene.2008.12.008.
  18. D. Fournier, P. Archier, R. Le Tellier, C. Suteau, Improvement of neutronic calculations on a MASURCA core using adaptive mesh refinement capabilities, in: International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2011), Rio de Janeiro, Brazil, May 8-12, 2011, 2011.
  19. M.W. Hackemack, J.C. Ragusa, Quadratic serendipity discontinuous finite element discretization for SN transport on arbitrary polygonal grids, J. Comput. Phys. 374 (2018) 188-212, https://doi.org/10.1016/j.jcp.2018.05.032.
  20. C. Liu, J. Wei, J. Li, Z. Sheng, B. Zhang, S. Tan, Multilevel mesh adaptivity for discrete ordinates transport calculation with spatial-moment-ratio indicators, Ann. Nucl. Energy 176 (2022), 109288, https://doi.org/10.1016/j.anucene.2022.109288.
  21. C. Liu, B. Zhang, L. Zhang, Y. Chen, Nonmatching discontinuous Cartesian grid algorithm based on the multilevel octree architecture for discrete ordinates transport calculation, Nucl. Sci. Eng. 194 (12) (2020) 1175-1201, https://doi.org/10.1080/00295639.2020.1780842.
  22. G. Borodkin, B. Boehmer, K. Noack, N. Khrennikov, Balakovo-3 VVER-1000 exvessel neutron dosimetry benchmark experiment. SINBAD Project Report, Scientific and Engineering Centre for Nuclear and Radiation Safety (SEC NRS) and Forschungszentrum Rossendorfe.V. (FZR), 2002.
  23. G. Borodkin, N. Khrennikov, B. Bohmer, et al., Balakovo-3 ex-vessel exercise: analysis of calculation results intercomparison and comparison with reference data, in: Proceedings of the 11th International Symposium on Reactor Dosimetry, Brussels, Belgium, 2003, pp. 665-673.
  24. I.A. Kodeli, E. Sartori, SINBADeRadiation shielding benchmark experiments, Ann. Nucl. Energy 159 (2021), 108254, https://doi.org/10.1016/j.anucene.2021.108254.
  25. J.O. Kim, J.K. Kim, A new uncertainty arising in reactor pressure vessel fluence calculation, Ann. Nucl. Energy 25 (12) (1998) 963-982, https://doi.org/10.1016/S0306-4549(98)00009-7.
  26. A. Vasiliev, H. Ferroukhi, M.A. Zimmermann, R. Chawla, Development of a CASMO-4/SIMULATE-3/MCNPX calculation scheme for PWR fast neutron fluence analysis and validation against RPV scraping test data, Ann. Nucl. Energy 34 (8) (2007) 615-627, https://doi.org/10.1016/j.anucene.2007.02.020.
  27. G.E. Sjoden, A. Haghighat, The exponential directional weighted (EDW) Sn differencing scheme in 3-D Cartesian geometry, in: Joint International Conference on Mathematical Methods and Supercomputing for Nuclear Applications, Saratoga Springs, New York, October 5-9, 1997, 1997.
  28. C. Liu, B. Zhang, Y. Chen, Solution-dependent predictor-corrector flux mapping algorithm for discrete ordinates calculation on multilevel discontinuous grids, Ann. Nucl. Energy 152 (2021), 108033, https://doi.org/10.1016/j.anucene.2020.108033.
  29. J.I. Duo, Y.Y. Azmy, Spatial convergence study of discrete ordinates methods via the singular characteristic tracking algorithm, Nucl. Sci. Eng. 162 (1) (2009) 41-55, https://doi.org/10.13182/NSE08-28.
  30. K.A. Mathews, On the propagation of rays in discrete ordinates, Nucl. Sci. Eng. 132 (2) (1999) 155-180, https://doi.org/10.13182/NSE99-A2057.
  31. G.L. Ramone, M.L. Adams, P.F. Nowak, A transport synthetic acceleration method for transport iterations, Nucl. Sci. Eng. 125 (3) (1997) 257-283, https://doi.org/10.13182/NSE97-A24274.
  32. M.L. Adams, E.W. Larsen, Fast iterative methods for discrete-ordinates particle transport calculations, Prog. Nucl. Energy 40 (1) (2002) 3-159, https://doi.org/10.1016/S0149-1970(01)00023-3.
  33. A. Haghighat, M. Mahgerefteh, B.G. Petrovic, Evaluation of the uncertainties in the source distribution for pressure vessel neutron fluence calculations, Nucl. Technol. 109 (1) (1995) 54-75, https://doi.org/10.13182/NT95-A35068.
  34. D.H. Kim, C.S. Gil, Y.O. Lee, Validation of an ENDF/B-VII. 0-based neutron and photon shielding library in MATXS-format, J. Kor. Phys. Soc. 59 (2) (2011) 1199-1202, https://doi.org/10.3938/jkps.59.1199.
  35. E.M. Zsolnay, R. Capote Noy, H.J. Nolthenius, A. Trkov, Summary Description of the New International Reactor Dosimetry and Fusion File (IRDFF Release 1.0), International Atomic Energy Agency, 2012.
  36. U.S. Nuclear Regulatory Commission, Calculational and dosimetry methods for determining pressure vessel neutron fluence, Regulatory Guide 1, 2001, p. 190.
  37. R.E. Maerker, M.L. Williams, B.L. Broadhead, Accounting for changing source distributions in light water reactor surveillance dosimetry analysis, Nucl. Sci. Eng. 94 (4) (1986) 291-308, https://doi.org/10.13182/NSE86-A18342.
  38. I. Remec, F.B. Kam, H.B. Robinson-2 Pressure Vessel Benchmark, ORNL/TM13204, Oak Ridge National Laboratory, 1998.
  39. Y. Chen, B. Zhang, L. Zhang, J. Zheng, Y. Zheng, C. Liu, ARES: a parallel discrete ordinates transport code for radiation shielding applications and reactor physics analysis, Article ID 2596727, Sci. Technol.Nucl.Install. 2017 (2017) 11, https://doi.org/10.1155/2017/2596727. pages, 2017.