• 제목/요약/키워드: Cartesian coordinate robot

검색결과 32건 처리시간 0.031초

2축 직교좌표 로봇에서 2축 직선 운동 가이드가 로봇의 기계적 성능에 미치는 영향 (Effect of 2nd Axis Linear Motion Guide on Mechanical Performance of Robot in 2-Axis Cartesian Coordinate Robot)

  • 이종신
    • 한국기계기술학회지
    • /
    • 제13권1호
    • /
    • pp.95-103
    • /
    • 2011
  • Robots in various types carry and assemble parts through repeatedly and accurately moving to stored locations by combining linear motions. And, linear systems are used in orthogonal axes of robots and driven via ball screws, such as 2-axis cartesian coordinate robot in this paper. This paper presents the effect of the linear motion guide that is used in $2^{nd}$ axis in 2-axis cartesian coordinate robot. Some simulation results show that the linear motion guide influence greatly in robot performance such as the nominal life of linear guide. When use LM guide that have capacity near in $2^{nd}$ axis, this paper show that the nominal life on LM block of $1^{st}$ axis increases 37.4% and that the specification of $2^{nd}$ axis LM guide influences greatly the nominal life of $1^{st}$ axis LM block.

로보트 운동에 대한 공간 좌표 제어 (Cartesian Coordinate Control of Robot Motion)

  • 노영식;우광방
    • 대한전기학회논문지
    • /
    • 제35권5호
    • /
    • pp.177-184
    • /
    • 1986
  • An effective cartesian coordinate model is presented to control a robot motion along a prescribed timebased hand trajectory in cartesian coordinates and to provide an adaptive feedback design approach utilizing self-tuning control methods without requiring a detailed mathematical description of the system dynamics. Assuming that each of the hybrid variable set of velocities and forces at the cartesian coordinate level is mutually independent, the dynamic model for the cartesian coordinate control is reduced to first-order SISO models for each degree of freedom of robot hand, including a term to represent all unmodeled effects, by which the number of parameters to be identified is minimized. The self-tuners are designde to minimize a chosen performance criterion, and the computed control forces are resolved into applied joint torques by the Jacobian matrix. The robustness of the model and controller is demonstrated by comparing with the other catesian coordinate controllers.

  • PDF

A Study on the Camera Calibration Algorithm of Robot Vision Using Cartesian Coordinates

  • Lee, Yong-Joong
    • 한국공작기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.98-104
    • /
    • 2002
  • In this study, we have developed an algorithm by attaching a camera at the end-effector of industrial six-axis robot in order to determine position and orientation of the camera system from cartesian coordinates. Cartesian coordinate as a starting point to evaluate for suggested algorithm, it was easy to confront increase of orientation vector for a linear line point that connects two points from coordinate space applied by recursive least square method which includes previous data result and new data result according to increase of image point. Therefore, when the camera attached to the end-effector has been applied to production location, with a calibration mask that has more than eight points arranged, this simulation approved that it is possible to determine position and orientation of cartesian coordinates of camera system even without a special measuring equipment.

직교좌표공간과 관절공간에서의 4족 보행로봇의 두 가지 진화적 걸음새 생성기법 (Two Evolutionary Gait Generation Methods for Quadruped Robots in Cartesian Coordinates Space and Join Coordinates Space)

  • 서기성
    • 전기학회논문지
    • /
    • 제63권3호
    • /
    • pp.389-394
    • /
    • 2014
  • Two evolutionary gait generation methods for Cartesian and Joint coordinates space are compared to develop a fast locomotion for quadruped robots. GA(Genetic Algorithm) based approaches seek to optimize a pre-selected set of parameters for the locus of paw and initial position in cartesian coordinates space. GP(Genetic Programming) based technique generate few joint trajectories using symbolic regression in joint coordinates space as a form of polynomials. Optimization for two proposed methods are executed using Webots simulation for the quadruped robot which is built by Bioloid. Furthermore, simulation results for two proposed methods are analysed in terms of different coordinate spaces.

평면좌표계형 로보트구동을 위한 퍼지 제어기 개발 (Development of DC Servo Motor Fuzzy Controller for Drive of Cartesian Coordinate Type Robot)

  • 최낙일;성경민;정수복;이상일;차인수;박해암
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.528-530
    • /
    • 1996
  • Because of the convenience of variable speed control and proportion of input current and torque, DC servo motor has been used as an actuator. With increasing development speed of robot and factory automation machinery, the actuator of excellent control characteristics is demanded. In this paper, The control characteristics of DC servo motor is tested by Fuzzy control with microprocessor and DC servo motor controller is designed for drive of the cartesian coordinate type robot. The control characteristics experimentation is realized to one axis position, two axes coordinate and circular motion control by experimental equipments.

  • PDF

신경회로망을 이용한 기구학적 자코비안의 불확실성 보상 알고리즘 (Kinematic jacobian uncertainty compensation using neural network)

  • 정슬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1820-1823
    • /
    • 1997
  • For the Cartesian space position controlled robot, it is required to have the accurate mapping from the Cartesian space to the joint space in order to command the desired joint trajectories correctly. since the actual mapping from Cartesian space to joint space is obtained at the joint coordinate not at the actuator coordinate, uncertainty in Jacobian can be present. In this paper, two feasible neural network schemes are proposed to compensate for the kinematic Jacobian uncertainties. Uncertainties in Jacobian can be compensated by identifying either actuator Jacobian off-line or the inverse of that in on-line fashion. the case study of the stenciling robot is examined.

  • PDF

로봇 매니퓰레이터의 직교공간 적응제어 방식 (A Cartesian Space Adaptive Control Scheme for Robot Manipulators)

  • 황석용;유준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 추계학술대회 논문집 학회본부
    • /
    • pp.397-400
    • /
    • 1991
  • This paper presents a cartesian space decentralized adaptive controller design for the end effector of the robot manipulator to track the given desired trajectory in the cartesian coordinate. By the cartesian based control scheme, the task related high level motion command is directly executed without solving the complex inverse kinematic equations. The controller does not require the complex manipulator dynamic model, and hence it is computationally very efficient. Each degree of freedom of the end effector on the cartesian space is controlled by a PID feedback controller and a velocity acceleration feed forward conpensation part. Simulation results for a two-link direct drive manipulator conform that the present cartesian based decentralized scheme is feasible.

  • PDF

음향 데이터를 이용한 CNN 추론 윈도우 기반 산업용 직교 좌표 로봇의 고장 진단 기법 (Failure Detection Method of Industrial Cartesian Coordinate Robots Based on a CNN Inference Window Using Ambient Sound)

  • 조현태
    • 대한임베디드공학회논문지
    • /
    • 제19권1호
    • /
    • pp.57-64
    • /
    • 2024
  • In the industrial field, robots are used to increase productivity by replacing labors with dangerous, difficult, and hard tasks. However, failures of individual industrial robots in the entire production process may cause product defects or malfunctions, and may cause dangerous disasters in the case of manufacturing parts used in automobiles and aircrafts. Although requirements for early diagnosis of industrial robot failures are steadily increasing, there are many limitations in early detection. This paper introduces methods for diagnosing robot failures using sound-based data and deep learning. This paper also analyzes, compares, and evaluates the performance of failure diagnosis using various deep learning technologies. Furthermore, in order to improve the performance of the fault diagnosis system using deep learning technology, we propose a method to increase the accuracy of fault diagnosis based on an inference window. When adopting the inference window of deep learning, the accuracy of the failure diagnosis was increased up to 94%.

산업용 로보트의 효율적인 작동 데이터 산출방법에 관한 연구 (A study on the efficient calculation method of the motion data in the industrial robot)

  • 이순요;권규식;노근래
    • 대한인간공학회지
    • /
    • 제9권2호
    • /
    • pp.21-28
    • /
    • 1990
  • The robot motion control in the industrial robot is generally executed by the teach pendant. But, it requires much teaching time and workload to the operators. This study suggests the use of the robot motion control method by the computed keyboard in the industrial robot instead of the teach pendant. TES/CCS(Teaching Expert System/Cartesian Coordinate System) and TES/WCS(Teaching Expert System/World Coordinate System) that have been proposed to improve the robot motion control are applied for this concept. This study is intended to improve the robot motion control in TES/CCS. Parameter limitation problems in getting the motion data on position and posture of the robot in macro motion control are solved by proposed geometric algorithm. This result demonstrates reduction of the average teaching task time to the teaching position.

  • PDF

직각 좌표 로보트의 PWM 프로그래머블 제어기 설계 (Design of a PWM Programmable Controller for Cartesian Coordinates Robot)

  • 이두복;박상희
    • 대한전기학회논문지
    • /
    • 제36권4호
    • /
    • pp.293-300
    • /
    • 1987
  • This paper presents a desing of a PWM programmable controller for industrial robot to be utilized in process which reqires various movements and repeating operations. To be specific, a low-level robot language is constructed which makes easy for the user to program complex robot motion, and an interpreter is developed to execute the program. Also, related hardware and software, and monitor program for convenience of user are implemented. When the proposed controller is applied to the catresian coordinate 4-axis manipulator, it reveals that the error probabilities of X,Y and Z axis as 0.033%, 0.023%,0.028% respectively.

  • PDF