• Title/Summary/Keyword: Carrier-based pulse width modulation

Search Result 51, Processing Time 0.031 seconds

A Hybrid Modulation Strategy with Reduced Switching Losses and Neutral Point Potential Balance for Three-Level NPC Inverter

  • Jiang, Weidong;Gao, Yan;Wang, Jinping;Wang, Lei
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.738-750
    • /
    • 2017
  • In this paper, carrier-based pulse width modulation (CBPWM), space vector PWM (SVPWM) and reduced switching losses PWM (RSLPWM) for the three-level neutral point clamped (NPC) inverter are introduced. In the case of the neutral point (NP) potential (NPP) offset, an asymmetric disposition PWM (ASPDPWM) strategy is proposed, which can output PWM sequences correctly and suppress the lower order harmonics of the inverter effectively. An NPP balance strategy based on carrier based PWM (CBPWM) is analyzed. A hybrid modulation strategy combining RSLPWM and the NPP balance based on CBPWM is proposed, and hysteresis control is adopted to switch between the two modulation strategies. An experimental prototype of the three-level NPC inverter is built. The effectiveness of the hybrid modulation is verified with a resistance-inductance load and a permanent magnetic synchronous motor (PMSM) load, respectively. The experimental results show that reduced switching losses and an acceptable NPP can be effectively achieved in the hybrid modulation strategy.

Performance Analysis of a Novel Reduced Switch Cascaded Multilevel Inverter

  • Nagarajan, R.;Saravanan, M.
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.48-60
    • /
    • 2014
  • Multilevel inverters have been widely used for high-voltage and high-power applications. Their performance is greatly superior to that of conventional two-level inverters due to their reduced total harmonic distortion (THD), lower switch ratings, lower electromagnetic interference, and higher dc link voltages. However, they have some disadvantages such as an increased number of components, a complex pulse width modulation control method, and a voltage-balancing problem. In this paper, a novel nine-level reduced switch cascaded multilevel inverter based on a multilevel DC link (MLDCL) inverter topology with reduced switching components is proposed to improve the multilevel inverter performance by compensating the above mentioned disadvantages. This topology requires fewer components when compared to diode clamped, flying capacitor and cascaded inverters and it requires fewer carrier signals and gate drives. Therefore, the overall cost and circuit complexity are greatly reduced. This paper presents modulation methods by a novel reference and multicarrier based PWM schemes for reduced switch cascaded multilevel inverters (RSCMLI). It also compares the performance of the proposed scheme with that of conventional cascaded multilevel inverters (CCMLI). Simulation results from MATLAB/SIMULINK are presented to verify the performance of the nine-level RSCMLI. Finally, a prototype of the nine-level RSCMLI topology is built and tested to show the performance of the inverter through experimental results.

A Four-quadrant Analog Multiplier Based on Switched-capacitor and Pulse-Width Amplitude Modulation Techniques

  • Siripruchyanun, Montree;Wardkein, Paramote
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.739-742
    • /
    • 2002
  • This article proposes a Four-Quadrant Analog Multiplier (4-QAM) applying switched-capacitor and pulse-width amplitude modulation (PWAM) principles. The features of the presented circuit are that it can function as analog multiplier with a wide dynamic range of input signal and no disturbing from deviation of carrier frequency of PWM signal. In addition, the circuit detail is simpler than that of the previously proposed circuits. It is then easy and applicable for employing it into Integrated Circuit (IC) realization to especially operate in low-frequency and low-power applications. The experimental results granted are in correspondence to the theoretical analysis.

  • PDF

Implementation of Space Vector Two-Arm Modulation for Independent Motor Control Drive Fed by a Five-Leg Inverter

  • Talib, Md Hairul Nizam;Ibrahim, Zulkifilie;Rahim, Nasrudin Abd.;Abu Hasim, Ahmad Shukri
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.115-124
    • /
    • 2014
  • This paper presents the implementation of two-arm modulation (TAM) technique for the independent control of a two-induction motor drive fed by a five-leg inverter (FLI). A carrier-based space vector pulse width modulation technique for TAM is proposed to generate switching signals for FLI. Two independent three-phase space vector modulators are utilized to control two motors. The motor drive system applies two separate indirect field-oriented control methods. The stationary voltage outputs from the vector control are synthesized in the three-phase space vector modulator to generate switching signals for FLI. The performance of the independent control of the motors and the voltage utilization factor are likewise analyzed. Simulation and experimental results verify the effectiveness of the proposed method for the independent control of the two-motor drive system. The proposed technique is successfully validated by dSPACE DS1103 experimental work.

Carrier Based LFCPWM for Leakage Current Reduction and NP Current Control in 3-Phase 3-Level Converter (3상 3-레벨 컨버터의 누설전류 저감과 NP 전류 제어를 위한 캐리어 기반 LFCPWM)

  • Lee, Eun-Chul;Choi, Nam-Sup
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.446-454
    • /
    • 2022
  • This study proposes a carrier-based pulse width modulation (PWM) method for leakage current reduction and neutral point (NP) current control in a three-phase three-level converter, which is a carrier-based PWM version of the previously proposed low-frequency common mode voltage PWM. Three groups of space vectors with the same common mode voltage are used. When the averaged NP current needs to be positive or negative, the specific groups are employed to produce low-frequency common mode voltages. The validity of the proposed PWM method is verified through experiments.

Reduction of Common Mode Voltage in Asymmetrical Dual Inverter Configuration Using Discontinuous Modulating Signal Based PWM Technique

  • Reddy, M. Harsha Vardhan;Reddy, T. Bramhananda;Reddy, B. Ravindranath;Suryakalavathi, M.
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1524-1532
    • /
    • 2015
  • Conventional space vector pulse width modulation based asymmetrical dual inverter configuration produces high common mode voltage (CMV) variations. This CMV causes the flow of common mode current, which adversely affects the motor bearings and electromagnetic interference of nearby electronic systems. In this study, a simple and generalized carrier based pulse width modulation (PWM) technique is proposed for dual inverter configuration. This simple approach generates various continuous and discontinuous modulating signals based PWM algorithms. With the application of the discontinuous modulating signal based PWM algorithm to the asymmetrical dual inverter configuration, the CMV can be reduced with a slightly improved quality of output voltage. The performance of the continuous and discontinuous modulating signals based PWM algorithms is explored through both theoretical and experimental studies. Results show that the discontinuous modulating signal based PWM algorithm efficiently reduces the CMV and switching losses.

New Generalized PWM Schemes for Multilevel Inverters Providing Zero Common-Mode Voltage and Low Current Distortion

  • Nguyen, Nho-Van;Nguyen, Tam-Khanh Tu
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.907-921
    • /
    • 2019
  • This paper presents two advanced hybrid pulse-width modulation (PWM) strategies for multilevel inverters (MLIs) that provide both common-mode voltage (CMV) elimination and current ripple reduction. The first PWM utilizes sequences that apply one switching state at the double ends of a half-carrier cycle. The second PWM combines the advantages of the former and an existing four-state PWM. Analyses of the harmonic characteristics of the two groups of switching sequences based on a general switching voltage model are carried out, and algorithms to optimize the current ripple are proposed. These methods are simple and can be implemented online for general n-level inverters. Using a three-level NPC inverter and a five-level CHB inverter, good performances in terms of the root mean square current ripple are obtained with the proposed PWM schemes as indicated through improved harmonic distortion factors when compared to existing schemes in almost the entire region of the modulation index. This also leads to a significant reduction in the current total harmonic distortion. Simulation and experimental results are provided to verify the effectiveness of the proposed PWM methods.

Overmodulation Characteristics of Carrier Based MVPWM for Eliminating the Leakage Currents in Three-Level Inverter (3-레벨 인버터의 누설전류 제거를 위한 캐리어 기반 MVPWM의 과변조 특성)

  • Lee, Eun-Chul;Choi, Nam-Sup;Ahn, Kang-Soon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.509-516
    • /
    • 2015
  • The overmodulation characteristics of a carrier-based medium vector pulse width modulation (CBMVPWM) are examined in this study. CBMVPWM can completely eliminate leakage currents in a three-phase, three-level inverter using only the switching states with the same common mode voltage even in an overmodulation operation. The analytic equations for the magnitude of the output voltage and the switching frequency are derived for overmodulation operation, and the effect of dead time on the leakage current is demonstrated. This study presents the operating principle of CBMVPWM, basic overmodulation features, and simulations and experiments for operating verification.

Implementation Method of Overmodulation Technique With High Linearity in DSP (선형성이 우수한 과변조 기법의 DSP 구현 방법)

  • Kim, Joon-Seok;Kim, Do-Hyen;Lee, June-Hee;Lee, June-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.2
    • /
    • pp.118-125
    • /
    • 2022
  • With the aim to maximize the use of a given voltage source in the field of railway and electric vehicles, this study applies a technique for controlling the overmodulation region between the linear and the six-step regions. High linearity overmodulation techniques that do not use look-up table (LUT) to digital signal processor (DSP) using carrier based pulse width modulation (PWM) are proposed. Such technique requires the phase of the voltage vector at the point where the circular trajectory of the voltage command vector and hexagonal cross each other. Therefore, a method is proposed to obtain a phase of a voltage vector that is derived through an equation and applied to a carrier-based PWM. Validity of the proposed implementation method is confirmed through simulation and experiment.

Modulation, Harmonic Analysis, and Balancing Control for a New Modular Multilevel Converter

  • Li, Binbin;Zhang, Yi;Wang, Gaolin;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.163-172
    • /
    • 2016
  • The modular multilevel converter (MMC) has been receiving increased attentions in recent years. The new modular multilevel converter is a derivative topology from the traditional MMC in which the number of sub-modules (SMs) necessitated by each phase can be reduced by one. This paper presents a phase-shifted carrier pulse-width modulation (PSC-PWM) for the new MMC with an optimal phase-shifted angle to suppress the harmonics of the output voltage. Further, the harmonic features when the capacitor voltage of the middle SM is selected as two different values are also investigated. Moreover, in order to avoid introducing an unnecessary dc offset current at the ac terminals of the new MMC, a novel capacitor voltage balancing scheme is proposed by adjusting the amplitude of the reference signals rather than the offset. Finally, the validity and effectiveness of the proposed modulation and balancing schemes have been verified by experimental results based on a three-phase prototype of the new MMC.