• Title/Summary/Keyword: Carrier-To-Noise Ratio

Search Result 185, Processing Time 0.022 seconds

Sequential Optimization for Subcarrier Pairing and Power Allocation in CP-SC Cognitive Relay Systems

  • Liu, Hongwu;Jung, Jaijin;Kwak, Kyung Sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1638-1653
    • /
    • 2014
  • A sequential optimization algorithm (SOA) for resource allocation in a cyclic-prefixed single-carrier cognitive relay system is proposed in this study. Both subcarrier pairing (SP) and power allocation are performed subject to a primary user interference constraint to minimize the mean squared error of frequency-domain equalization at the secondary destination receiver. Under uniform power allocation at the secondary source and optimal power allocation at the secondary relay, the ordered SP is proven to be asymptotically optimal in maximizing the matched filter bound on the signal-to-interference-plus-noise ratio. SOA implements the ordered SP before power allocation optimization by decoupling the ordered SP from the power allocation. Simulation results show that SOA can optimize resource allocation efficiently by significantly reducing complexity.

Direct Time-domain Phase Correction of Dual-comb Interferograms for Comb-resolved Spectroscopy

  • Lee, Joohyung
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.289-297
    • /
    • 2021
  • We describe a comb-mode resolving spectroscopic technique by direct time-domain phase correction of unstable interferograms obtained from loosely locked two femtosecond lasers. A low-cost continuous wave laser and conventional repetition rate stabilization method were exploited for locking carrier and envelope phase of interferograms, respectively. We intentionally set the servo control at low bandwidth, resulting in severe interferograms' fluctuation to demonstrate the capability of the proposed correction method. The envelope phase of each interferogram was estimated by a quadratic fit of carrier peaks to correct timing fluctuation of interferograms in the time domain. After envelope phase correction on individual interferograms, we successfully demonstrated 1 Hz linewidth of RF comb-mode over 200 GHz optical spectral-bandwidth with 10-times signal-to-noise ratio (SNR) enhancement compared to the spectrum without correction. Besides, the group delay difference between two femtosecond pulses is successfully estimated through a linear slope of phase information.

Walsh-Hadamard-transform-based SC-FDMA system using WARP hardware

  • Kondamuri, Shri Ramtej;Anuradha, Sundru
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.197-208
    • /
    • 2021
  • Single-carrier frequency division multiple access (SC-FDMA) is currently being used in long-term evolution uplink communications owing to its low peak-to-average power ratio (PAPR). This study proposes a new transceiver design for an SC-FDMA system based on Walsh-Hadamard transform (WHT). The proposed WHT-based SC-FDMA system has low-PAPR and better bit-error rate (BER) performance compared with the conventional SC-FDMA system. The WHT-based SC-FDMA transmitter has the same complexity as that of discrete Fourier transform (DFT)-based transmitter, while the receiver's complexity is higher than that of the DFT-based receiver. The exponential companding technique is used to reduce its PAPR without degrading its BER. Moreover, the performances of different ordered WHT systems have been studied in additive white Gaussian noise and multipath fading environments. The proposed system has been verified experimentally by considering a real-time channel with the help of wireless open-access research platform hardware. The supremacy of the proposed transceiver is demonstrated based on simulated and experimental results.

Performance analysis of atomic magnetometer and bandwidth-extended loop antenna in resonant phase-modulated magnetic field communication system

  • Hyun Joon Lee;Jung Hoon Oh;Jang-Yeol Kim;In-Kui Cho
    • ETRI Journal
    • /
    • v.46 no.4
    • /
    • pp.727-736
    • /
    • 2024
  • Telecommunications through an electrically conductive medium require the use of carrier bands with very-low and ultralow frequencies to establish radiofrequency links in harsh environments. Recent advances in atomic magnetometers operating at very-low frequencies have facilitated the reception of digitally modulated signals. We demonstrate the transmission and reception of quadrature phase-shift keying (QPSK) signals using a multi-resonant loop antenna and atomic magnetometer, respectively. We report the measured error vector magnitude according to the symbol rate for QPSK modulation and analyze the bandwidth of a receiver based on the atomic magnetometer. The multi-resonant loop antenna noticeably enhances the bandwidth by over 70% compared with a single-loop antenna. QPSK modulation for a carrier frequency of 20 kHz and symbol rate of 150 symbols per second verifies the feasibility of demodulation, and the measured error vector magnitude and signal-to-noise ratio are 7.29% and 30.9 dB, respectively.

The Comparative Error Performance of Digital Communication System in Gaussian/Non Gaussian Nolse and Fading Environments (가우스성/비가우스성 잡음과 페이딩 환경하에서의 제반 디지틀 통신방식의 오율특성)

  • 김현철;조성준
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1987.04a
    • /
    • pp.223-229
    • /
    • 1987
  • The error rate eqations of digital modulated signals transmitted through the fading cdannel have been derived in the Gaussian/Impulsive noise environments Whing the derived equations for the error drobadillties of ASK, QAM, FSK, MSK, PSK, and DPSK signais, the error tate performance of digital modulation systems have been evaluated and represented in the graghes as parameters of carrier to \ulcornernoise power ratio (CNR) and fading figures The results show that in the fading environenet the error is occurred more frequently by gaussian noise in the deep fading Howerer in the shallow fading lmpulsive noise is more domiant than gaussian nosie in occurring the error

  • PDF

Enhancement of ACPR and Noise level of Analog Optical Transmitter by Feedforward Compensation (피드포워드 보상회로를 적용한 아날로그 광 송신기의 ACPR과 잡음 레벨 개선)

  • Lee, Joon-Jae;Park, Sang-Hyun;Yun, Young-Seol;Choi, Young-Wan
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.149-153
    • /
    • 2005
  • The optical fiber micro-cellular system requires the high linearity that determines the quality and capacity of system. Hence, there is a need for improving the linearity in mobile communication system. In order to compensate dispersion-induced signal distortion, we fabricated the optical feedforward transmitter. The compared 3rd-IMD was enhanced by 38 dB for two-tone case and the Adjacent Channel Power Ratio was enhanced by 20 dB for W-CDMA 1 carrier and by 16 dB for W-CDMA 3 carriers. Also, the induced noise level was reduced.

  • PDF

Low-Noise Detector Design for Measuring the Electric Conductivity of Liquids (액체의 전기 전도도 측정을 위한 저잡음 검출기 설계)

  • Kim, Nam Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.287-292
    • /
    • 2012
  • In this paper, design of a conductivity detector using a synchronous demodulation is presented to detect the electric conductivity of liquids with low noise. For the purpose, the detector is constructed by the combination of a carrier generator, conductivity detecting cell, and synchronous demodulator. The signal-to-noise ratio(SNR) of the detector is improved by adjusting the frequency bandwidth of the demodulator, whereby infinitesimal conductivity signals can easily be measured under various noise environments. As an application example, a conductivity detector, which is applied to the air monitoring in a fabrication process of semiconductor chips, is designed using the synchronous demodulation. The validity of the design technique is verified by experiments. Since experimental results are shown to approach the design performance of the detector, the synchronous demodulation proves to be useful to the design of a conductivity detector for measuring the infinitesimal electric conductivity of liquids.

A Study on Calculation of Protection Ratio for Frequency Coordination in Microwave Relay System Networks (M/W 중계 시스템 망의 주파수 조정을 위한 보호비 계산에 대한 연구)

  • Suh, Kyoung-Whoan;Lee, Joo-Hwan
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.125-130
    • /
    • 2005
  • This paper suggests an efficient method of protection ratio calculation and shows some calculated results applicable to frequency coordination in microwave relay system networks, and the net filter discrimination (NFD) associated with Tx spectrum mask and overall Rx filter characteristics has been examined to obtain the adjacent channel protection ratio. The protection ratio comprises several factors such as C/N of modulation scheme, noise-to-interference ratio, multiple interference allowance, fade margins of multi-path and rain attenuation, and NFD. According to computed results for 6.7 GHz, 64-QAM, and 60 km at BER $10^{-6}$, fade margin and co-channel protection ratio are 41.1 and 75.2 dB, respectively, In addition, NFD for channel bandwidth of 40 MHz reveals 28.9 dB at the first adjacent channel, which results in adjacent channel protection ratio of 46.3 dB. The proposed method provides some merits of an easy calculation, systematic extension, and applying the same concept to frequency coordination in millimeter wave relay system networks.

  • PDF

A Resource Management Technique for OFDM-based Digital Duplex Systems (OFDM 기반의 디지털 이중화 시스템을 위한 자원 관리 기법)

  • Park, Chang-Hwan;Kim, Moo-Chul;Ko, Yo-Han;Park, Kyung-Won;Jeon, Won-Gi;Paik, Jong-Ho;Lee, Seok-Pil;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12C
    • /
    • pp.1131-1137
    • /
    • 2009
  • In this paper, a resource management technique for digital duplexing (DD) systems using orthogonal frequency division multiple access (OFDMA) is proposed. The proposed technique can reduce the dynamic range of the signal received at the subscriber station (SS) and minimize the effects of inter-symbol interference (ISI) and inter-carrier interference (ICI) due to the time difference of arrival (TDoA) without using a cyclic suffix. It is shown by computer simulation that the proposed technique can reduce the number of bits for an analog-to-digital converter (ADC) and increase the signal-to-interference and noise ratio (SINR) significantly.

An Adaptive Path Selection Technique Considering Time Difference of Arrival in Multi-hop Relay Systems (다중 홉 릴레이 시스템에서 전파 시간 차이가 고려된 적응적 경로 선택 기법)

  • Woo, Kyung-Soo;Park, Chang-Hwan;Yoo, Hyun-Il;Kim, Jae-Kwon;Han, Seung-Hee;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4A
    • /
    • pp.291-301
    • /
    • 2009
  • In this paper, the effect of ISI(Inter-Symbol Interference) and ICI(Inter-Carrier Interference) due to time difference of arrival on OFDMA-based mobile multi-hop relay (MMR) systems is analyzed. Analyses are performed for the ISI caused by the previous OFDMA symbol transmitted from neighboring macro or relay cell as well as the ISI caused by the next OFDMA symbol transmitted from neighboring macro or relay cell. Then, an effective SINR(Signal to Interference plus Noise Ratio) estimation method and a path selection method considering time difference of arrival are proposed to minimize the effect of ISI and ICI. It is shown by simulation that the performance degradation caused by time difference of arrival can be significantly mitigated when the proposed path selection method is applied to the uplink of OFDMA-based MMR systems.