DOI QR코드

DOI QR Code

Low-Noise Detector Design for Measuring the Electric Conductivity of Liquids

액체의 전기 전도도 측정을 위한 저잡음 검출기 설계

  • 김남태 (인제대학교 전자공학과)
  • Received : 2012.07.04
  • Published : 2012.09.25

Abstract

In this paper, design of a conductivity detector using a synchronous demodulation is presented to detect the electric conductivity of liquids with low noise. For the purpose, the detector is constructed by the combination of a carrier generator, conductivity detecting cell, and synchronous demodulator. The signal-to-noise ratio(SNR) of the detector is improved by adjusting the frequency bandwidth of the demodulator, whereby infinitesimal conductivity signals can easily be measured under various noise environments. As an application example, a conductivity detector, which is applied to the air monitoring in a fabrication process of semiconductor chips, is designed using the synchronous demodulation. The validity of the design technique is verified by experiments. Since experimental results are shown to approach the design performance of the detector, the synchronous demodulation proves to be useful to the design of a conductivity detector for measuring the infinitesimal electric conductivity of liquids.

본 논문에서는 액체의 전기 전도도를 저잡음으로 검출하기 위하여 동기복조를 이용하는 전도도 검출기를 설계한다. 이를 위하여 검출기는 반송파 발생기, 전도도 검출 셀, 전류-전압 변환기 및 동기 복조기로 구성하며, 복조기의 대역폭을 조정하여 검출기의 신호 대 잡음비(SNR)를 개선함으로써, 액체의 극미한 전도도도 용이하게 측정할 수 있도록 한다. 이의 응용 예로써, 반도체 공정의 공기감시용 전도도 검출기를 동기복조를 이용하여 설계하며, 실험을 통하여 설계의 타당성을 확인한다. 실험 결과, 검출기는 설계 성능에 부합하는 특성을 나타내므로, 동기복조를 이용한 전도도 검출기는 액체의 극미한 전도도 측정에 유용하게 사용될 수 있음을 입증하였다.

Keywords

References

  1. S. L. Schiefelbein, N. A. Fried, and K. G. Rhoads et al., "A high-accuracy calibration- free technique for measuring the electrical conductivity of liquids," Rev. of Scientific Instrum., vol. 69, pp. 3308-3313, Sept. 1998. https://doi.org/10.1063/1.1149095
  2. H. Ma, J. H. Lang, and A. H. Slocum, "Calibration-free measurement of liquid permittivity and conductivity using electrochemical impedance test cell with servomechanically adjustable cell constant," IEEE Sensors J., vol. 9, pp. 515-524, May 2009. https://doi.org/10.1109/JSEN.2009.2015401
  3. S. Ma, J. Schroder, and P. Hauptmann, "Sensor impedance spectrum measurement interface with lock-in amplifier," 2002 Proc. of IEEE Sensors, vol. 2, pp. 1313-1316, June 2002.
  4. P. Wasilek, L. J. Golonka, and A. Goreckadrzazga et al., "LTCC liquid conductivity detector," 26th Int. Spring Seminar on Electronics Technol., pp. 202-206, Stara Lesna, Slovak Rep., May 2003.
  5. M. O. Sonnaillon, R. Urteaga, and F. J. Bonetto et al., "Implementation of a high-frequency digital lock-in amplifier," 2005 Canadian Conf. on Electrical and Computer Eng., pp. 1229-1232, Saskatoon, Canada, May 2005.
  6. L. Zheng and C. He, "A new test method for electrical conductivity of aviation fuel," 2008 Conf. on Precision Electromagnetic Measurem., pp. 576-577, Broomfield, USA, June 2008.
  7. A. De Marcellis, G. Ferri, and M. Patrizi et al., "An integrated analog lock-in amplifier for low-voltage low-frequency sensor interface," 2007 2nd Int. Workshop on Advances in Sensors and Interface, pp. 1-5, Bari, Italy, June 2007.
  8. A. E. Moe, S. R. Marx, I. Bhinderwala, and D. M. Wilson., "A miniaturized lock-in amplifier design suitable for impedance measurement in cells," 2004 Proc. of IEEE Sensors, vol. 1, pp. 215-218, Oct. 2004.
  9. R. E. Zimmer and W. H. Tranter, Principles of Communications, John Wiley & Sons, Inc., 2002.
  10. P. R. Roberge, Corrosion Engineering: Principles and Practice, McGraw-Hill Book Co., 2008.