• Title/Summary/Keyword: Carnot

Search Result 35, Processing Time 0.022 seconds

A Method to Establish Two Clausius Inequalities (두 개의 Clausius 부등식의 입증 방법)

  • Park, Kyoung-Kuhn
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1361-1365
    • /
    • 2003
  • There are two Clausius inequalities. One involves the temperature of external reservoir and the other involves the temperature at the system boundary. It is shown that the former Clausius inequality can be established from a direct application of the proposition regarding the efficiency of a Carnot cycle based on an apparatus with two reservoirs. A different apparatus which also has two thermal reservoirs is utilized to compare the cyclic integral of the former inequality with that of the latter, resulting in the proof of the latter inequality.

  • PDF

The French Revolution and Mathematical changes (프랑스 혁명과 수학의 변화)

  • Choi, Jong-Sung
    • Journal for History of Mathematics
    • /
    • v.20 no.1
    • /
    • pp.33-44
    • /
    • 2007
  • This paper examines a historical case- the French Revolution- of conceptual change in mathematics. The case that is a space of possibility gave birth to a new community of mathematical practitioners. Carnot and Monge shared the particular conceptions of the problems, aims, and methods of a field and contributed to found Ecole Polytechnique. I intend to show how Carnot's and Monge's mathematical endeavours responded to social, political and technological developments in French society.

  • PDF

Study on the Establishment and Comparison of Clausius Inequalities (Clausius 부등식의 입증과 비교에 관한 연구)

  • Park, Kyoung-Kuhn
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.259-264
    • /
    • 2003
  • One Clausius inequality based on an apparatus with a single thermal reservoir is reviewed. Some intricate issues regarding the apparatus are brought up and therefore a preferred way to interpret the Kelvin-Planck statement is suggested. Then it is shown that another Clausius inequality can be established from a direct application of the proposition regarding the efficiency of a Carnot cycle. The establishment is based on an apparatus with two reservoirs, and the resultant inequality involves the temperature of external reservoir. Finally, a different apparatus which also has two thermal reservoirs is utilized to compare the cyclic integral of the former inequality with the one of the latter resulting in the proof of the former inequality which involves the temperature at the system boundary. The applications and limitations of these two Clausius inequalities are discussed.

A Study on the Flow Characteristics of a Butterfly Valve in Fire Protection (소화용 버터플라이 밸브의 유동특성에 관한 연구)

  • 이동명;김엽래
    • Fire Science and Engineering
    • /
    • v.16 no.4
    • /
    • pp.59-64
    • /
    • 2002
  • Investigation of flow characteristics on pressure loss and cavitations of the butterfly valve has been carried out. The pressure loss coefficient on opening angle of valve has been formulated by applying the Carnot's equations. Cavitations (such as cavitation Inception, super cavitation inception, cavitation damage inception, choking cavitation) have been predicted from the pressure loss coefficient of valve. The prediction of pressure loss and cavitation has been carried out change of the thickness ratio on opening angle of valve. The prediction data is utilize to necessary engineering data to develope of the butterfly valve.

The Maximum Power Condition of the Endo-reversible Cycles (내적가역 사이클의 최대출력 조건)

  • 정평석;김수연;김중엽;류제욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.172-181
    • /
    • 1993
  • Pseudo-Brayton cycle is defined as an ideal Brayton cycle admitting the difference between heat capacities of working fluid during heating and cooling processes. The endo-pseudo-Brayton cycle which is a pseudo-Brayton cycle with heat transfer processes is analyzed with the consideration of maximum power conditions and the results were compared with those of the endo-Carnot cycle and endo-Brayton cycle. As results, the maximum power is an extremum with respect to the cycle temperature and the flow heat capacities of heating and cooling processes. At the maximum power condition, the heat capacity of the cold side is smaller than that of heat sink flow. And the heat capacity of endo-Brayton cycle is always between those of heat source and sink flows and those of the working fluids of pseudo-Brayton cycle. There is another optimization problem to decide the distribution of heat transfer capacity to the hot and cold side heat exchangers. The ratios of the capacies of the endo-Brayton and the endo-pseudo-Braton cycles at the maximum power condition are just unity. With the same heat source and sink flows and with the same total heat transfer caqpacities, the maximum power output of the Carnot cycle is the least as expected, but the differences among them were small if the heat transfer capacity is not so large. The thermal efficiencies of the endo-Brayton and endo-Carnot cycle were proved to be 1-.root.(T$_{7}$/T$_{1}$) but it is not applicable to the pseudo-Brayton case, instead it depends on comparative sizes of heat capacities of the heat source and sink flow.w.

Optimal Analysis of Irreversible Carnot Cycle Based on Entransy Dissipation (엔트랜시 소산에 기반한 비가역 카르노 사이클의 최적 해석)

  • Kim, Kyoung Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.2
    • /
    • pp.87-95
    • /
    • 2017
  • The concept of entransy has been proposed recently as a potential heat transfer mechanism and could be useful in analyzing and optimizing the heat-work conversion systems. This work presents an entransy analysis for the irreversible Carnot cycle by systematic balance formulations of the entransy loss, work entransy, and entransy dissipations, which are consistent with exergy balances. Additionally, several forms of system efficiency are introduced based on entransy for the appreciation of the optimal system performance. The effects of the source temperature and irreversible efficiencies on the optimal conditions for system efficiencies are systematically investigated for both dumping and non-dumping cases of used source fluid. The results show different trends in entransy efficiencies when compared to the conventional efficiencies of energy and exergy, and represent another method to assess the effective use of heat source in power generation systems.

Maximum Power Output Condition of the Binary Power Cycle Composed of Two Carnot Cycles (이중 동력 사이클의 최대 출력 조건)

  • 김창욱;김수연;정평석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.349-354
    • /
    • 1991
  • The power output behavior of the binary cycle composed of two Carnot cycles is analyzed with considering heat transfer processes, in which the finitely constant temperature differences between heat sources and working fluids exists. The power output has the maximum value as an extremum for cycle temperatures and capacities of heat exchangers. In the internally reversible cycle, the power output is independent of the cycle temperature in the intermediate heat exchanger. In this case when the total capacities of heat exchangers are given, three heat exchangers have the same capacities at the maximum power output condition. In addition, when the cycle is not extremum for cycle temperatures and capacities of heat exchangers. At the maximum power output condition, the capacity of heat exchanger at the cold side is slightly more than the hot side as the cycle effectiveness decreases.

Magnetic refrigerator for hydrogen liquefaction

  • Numazawa, T.;Kamiya, K.;Utaki, T.;Matsumoto, K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.1-8
    • /
    • 2013
  • This paper reviews the development status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. Liquid hydrogen is in cryogenic temperatures and therefore high efficient liquefaction method must be studied. Magnetic refrigeration which uses the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency > 50 %, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system > 80 % liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 second of the cycle. By using the simulation, we estimate the total efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained in the magnetic refrigeration system operation temperature between 20 K and 77 K including LN2 work input.

A Study on the Performance Analysis of Butterfly Valve in Water Fire Extinguishing System (수계소화시스템 버터플라이 밸브의 성능해석에 관한 연구)

  • Lee, Dong-Myung
    • Fire Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.91-96
    • /
    • 2007
  • Performance analysis of the butterfly valve in water fire extinguishing has been carried out. Performance analysis of the butterfly valve are investigated for torque characteristics, pressure loss and cavitations. The torque characteristics of disc are corrected for the angles of attack of valve disc by theoretical torque equation, and correction equation is added. The pressure loss coefficient on opening angle of valve has been formulated by applying the Carnot's equations. The torque characteristics, pressure loss and cavitations of the butterfly valve are analyzed for the ratio of disc thickness to the valve diameter. Cavitations are analyzed from the pressure loss coefficient of valve. The analysis of pressure loss and cavitation has been carried out change of the thickness ratio on opening angle of valve. These analysis data are utilize to necessary engineering data to develope of the butterfly valve.