• Title/Summary/Keyword: Carnitine

Search Result 264, Processing Time 0.028 seconds

Anti-Obesity Effect of Schizandrae Fructus Water Extract through Regulation of AMPK/Sirt1/PGC-1α signaling pathway (AMPK/Sirt1/PGC-1α 신호 전달 경로의 조절을 통한 오미자 추출물의 비만 개선 효과)

  • Lee, Se Hui;Park, Hae-Jin;Shin, Mi-Rae;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.37 no.2
    • /
    • pp.1-11
    • /
    • 2022
  • Objectives : Although the anti-obesity effect of Schizandrae Fructus water extract has been demonstrated, its underlying mechanism is still unclear. Therefore, we aimed to evaluate the anti-obesity effect of Schizandrae Fructus water extract through the p-AMP-activated protein kinase (p-AMPK), sirtuin1 (Sirt1), and peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling in 60% high-fat diet (HFD)-induced obese mouse model. Methods : Male C57BL/6 mice were divided into four groups. The Normal group was fed a normal diet and the obese groups were fed 60% HFD. Except for the Control group, the GG group was supplemented with 0.5% Garcinia gummigutta and the SCW group was supplemented with 0.5% Schizandrae Fructus water extract. After 6 weeks, obesity-related biomarkers in serum were measured and the expressions of protein for lipid-related factors in liver tissue were analyzed by western blot. Results : Treatment with SCW significantly down-regulated body weight compared to the Control group. SCW down-regulated levels of triglyceride and total cholesterol in serum and significantly increased p-AMPK, Sirt1, and PGC-1α in liver tissue. In addition, the expressions of fatty acid oxidation-related proteins such as peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyltransferase 1A (CPT-1A), uncoupling protein 1 (UCP1), and uncoupling protein 3 (UCP3) were significantly up-regulated. However, fatty acid synthesis-related proteins including sterol regulatory element-binding protein-1 (SREBP-1), phospho-Acetyl-CoA Carboxylase (p-ACC), and fatty acid synthase (FAS) were significantly down-regulated. Conclusions : Taken together, SCW treatment showed anti-obesity effect by regulating both fatty acid oxidation-related and fatty acid synthesis-related proteins through AMPK/Sirt1/PGC-1α signaling in 60% HFD-induced obese mice.

MicroRNA analysis reveals the role of miR-214 in duck adipocyte differentiation

  • Wang, Laidi;Hu, Xiaodan;Wang, Shasha;Yuan, Chunyou;Wang, Zhixiu;Chang, Guobin;Chen, Guohong
    • Animal Bioscience
    • /
    • v.35 no.9
    • /
    • pp.1327-1339
    • /
    • 2022
  • Objective: Fat deposition in poultry is an important factor in production performance and meat quality research. miRNAs also play important roles in regulating adipocyte differentiation process. This study was to investigate the expression patterns of miRNAs in duck adipocytes after differentiation and explore the role of miR-214 in regulating carnitine palmitoyltransferases 2 (CPT2) gene expression during duck adipocyte differentiation. Methods: Successful systems for the isolation, culture, and induction of duck primary fat cells was developed in the experiment. Using Illumina next-generation sequencing, the miRNAs libraries of duck adipocytes were established. miRanda was used to predict differentially expressed (DE) miRNAs and their target genes. The expression patterns of miR-214 and CPT2 during the differentiation were verified by quantitative real-time polymerase chain reaction and western blot. Luciferase reporter assays were used to explore the specific regions of CPT2 targeted by miR-214. We used a miR-214 over-expression strategy in vitro to further investigate its effect on differentiation process and CPT2 gene transcription. Results: There were 481 miRNAs identified in duck adipocytes, included 57 DE miRNA candidates. And the 1,046 targets genes of DE miRNAs were mainly involved in p53 signaling, FoxO signaling, and fatty acid metabolism pathways. miR-214 and CPT2 showed contrasting expression patterns before and after differentiation, and they were selected for further research. The expression of miR-214 was decreased during the first 3 days of duck adipocytes differentiation, and then increased, while the expression of CPT2 increased both in the transcriptional and protein level. The luciferase assay suggested that miR-214 targets the 3'untranslated region of CPT2. Overexpression of miR-214 not only promoted the formation of lipid droplets but also decreased the protein abundance of CPT2. Conclusion: Current study reports the expression profile of miRNAs in duck adipocytes differentiated for 4 days. And miR-214 has been proved to have the regulator potential for fat deposition in duck.

Protective Effect of Rubus crataegifolius Extracts Against Obesity and Non-alcoholic Fatty Liver Disease via Promotion of AMPK/ACC/CPT-1 Pathway in HFD-induced C57BL/6J Obese Mice (HFD 유도 C57BL/6J 비만 mice에서 AMPK/ACC/CPT-1 경로 촉진을 통한 산딸기 추출물의 비만 및 비알코올성 지방간 질환에 대한 보호 효과)

  • Young Ik Lee;Hui Jin Lee;Su Jin Pyo;Yong Hyun Park;Myng Min Lee;Ho-Yong Sohn;Jin Sook Cho
    • Journal of Life Science
    • /
    • v.33 no.12
    • /
    • pp.967-977
    • /
    • 2023
  • Rubus crataegifolius (RC) is a traditional Asian medicinal plant belonging to the Rosaceae family. The fruits of RC are known to prevent adult diseases through antioxidants. In this study, the effects of RC extract (RCex) on obesity and nonalcoholic fatty liver disease (NAFLD) were evaluated in animal models. Twenty-eight male C57BL/6J mice were induced to become obese for 8 weeks and then the extract was orally administered for 8 weeks. RCex reduced body weight, adipose tissue, liver weight. RCex improved biochemical biomarkers including lipid metabolism (alanine aminotransferase (ALT), aspartate aminotransferase (AST), plasma triglyceride (TG), total cholesterol (TC), high-density lipoprotein (HDL) cholesterol and low-density lipoprotein (LDL) cholesterol). The activation of AMP-activated protein kinase (AMPK) reduced the expression of adipogenesis genes (liver × receptor (LXR), sterol regulatory element-binding protein-1c (SREBP-1c), fatty acid synthesis (FAS), acetyl-CoA carboxylase 1 (ACC1) and the effect of enhancing carnitine palmitoyltransferase (CPT) activity by RCex was verified. RCex also influence on plasma production of hormones (adiponectin & leptin) related on energy expenditure and metabolism. In addition, we confirmed that RCex improved glucose intolerance in HFD-induced obese rats. RCex was first demonstrated to have anti-obesity as well as anti-NAFLD effects by regulating fatty acid oxidation and fatty acid synthesis by phosphorylation of AMPK. This suggests that RCex could be a good supplement for the prevention of obesity and related NAFLD.

Identification and validation of putative biomarkers by in silico analysis, mRNA expression and oxidative stress indicators for negative energy balance in buffaloes during transition period

  • Savleen Kour;Neelesh Sharma;Praveen Kumar Guttula;Mukesh Kumar Gupta;Marcos Veiga dos Santos;Goran Bacic;Nino Macesic;Anand Kumar Pathak;Young-Ok Son
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.522-535
    • /
    • 2024
  • Objective: Transition period is considered from 3 weeks prepartum to 3 weeks postpartum, characterized with dramatic events (endocrine, metabolic, and physiological) leading to occurrence of production diseases (negative energy balance/ketosis, milk fever etc). The objectives of our study were to analyze the periodic concentration of serum beta-hydroxy butyric acid (BHBA), glucose and oxidative markers along with identification, and validation of the putative markers of negative energy balance in buffaloes using in-silico and quantitative real time-polymerase chain reaction (qRT-PCR) assay. Methods: Out of 20 potential markers of ketosis identified by in-silico analysis, two were selected and analyzed by qRT-PCR technique (upregulated; acetyl serotonin o-methyl transferase like and down regulated; guanylate cyclase activator 1B). Additional two sets of genes (carnitine palmotyl transferase A; upregulated and Insulin growth factor; downregulated) that have a role of hepatic fatty acid oxidation to maintain energy demands via gluconeogenesis were also validated. Extracted cDNA (complementary deoxyribonucleic acid) from the blood of the buffaloes were used for validation of selected genes via qRTPCR. Concentrations of BHBA, glucose and oxidative stress markers were identified with their respective optimized protocols. Results: The analysis of qRT-PCR gave similar trends as shown by in-silico analysis throughout the transition period. Significant changes (p<0.05) in the levels of BHBA, glucose and oxidative stress markers throughout this period were observed. This study provides validation from in-silico and qRT-PCR assays for potential markers to be used for earliest diagnosis of negative energy balance in buffaloes. Conclusion: Apart from conventional diagnostic methods, this study improves the understanding of putative biomarkers at the molecular level which helps to unfold their role in normal immune function, fat synthesis/metabolism and oxidative stress pathways. Therefore, provides an opportunity to discover more accurate and sensitive diagnostic aids.

Comparison of the Effects of Cyclodextrin-Naringin Inclusion Complex with Naringin on Lipid Metabolism in Mice Fed a High-Fat Diet (고지방식이를 섭취한 마우스에서 나린진과 나린진-사이클로텍스트린 포접화합물의 지질대사에 대한 영향 비교)

  • Jeon, Seon-Min;Choi, Myung-Sook
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.20 no.1
    • /
    • pp.20-29
    • /
    • 2010
  • Naringin has antioxidant and antihyperlipidemic properties, however, phenolic compounds including naringin are unstable in the presence of light, heat and oxygen. Beta-cyclodextrin ($\beta$-CD) is a cyclic heptamer composed of seven glucose units that enhances the stability and solubility of molecules through the formation of inclusion complexes. This study was conducted out to compare the effects of CD-naringin (CD-N) inclusion complexes with naringin on lipid metabolism in high fat-fed animals. Male C57BL/6 mice were fed either CD-N (0.048%, w/w) or naringin (N, 0.02%, w/w) in a 20% high-fat (HFC, 15% lard, 5% corn oil, w/w) diet for 10 weeks. Orlistat (Xenical, 0.01%, w/w) was used as a positive control (PC). There were no differences in body weight, food intake, liver and heart weights, plasma triglyceride(TG), leptin, adiponectin, resistin, IL-$1{\beta}$ and IL-6 concentrations, and hepatic $\beta$-oxidation, carnitine palmitoyl transferase(CPT), glucose-6-phosphate dehydrogenase (G6PD) and malic enzyme activities between the HFC and CD-N groups or between the HFC and N groups. However, both CD-naringin and naringin supplementation les to a significant reduction in the epididymal and perirenal white adipose tissue weights, plasma free fatty acid, insulin and blood glucose concentrations, hepatic cholesterol and TG contents and hepatic fatty acid synthase (FAS), phosphatidate phosphohydrolase (PAP) and HMG-CoA reductase activities compared to the HFC group. The plasma HDL-cholesterol concentration was significantly higher in CD-N and N groups than in HF and PC groups. These results indicate that both CD-naringin and naringin supplementation effectively improved plasma and hepatic lipid metabolism without differences between CD-N and naringin groups.

Effect of Grape Seed Water Extract on Lipid Metabolism and Erythrocyte Antioxidant Defense System in High-Fat Diet-Induced Obese C57BL/6 Mice (포도씨열수추출물이 고지방식이로 유도한 비만마우스의 지질대사와 적혈구 항산화 방어계에 미치는 영향)

  • Cho, Young-Sook;Jang, Eun-Mi;Jang, Sun-Mi;Chun, Mi-Sun;Shon, Mi-Yae;Kim, Myung-Joo;Lee, Mi-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.12
    • /
    • pp.1537-1543
    • /
    • 2007
  • This study was investigate the effect of grape seed water extract (GSW) on lipid profiles, lipid metabolism and erythrocyte antioxidant defense system in high-fat diet-induced obese mice. Three groups of male C57BL/6 mice were fed different diets for 6 weeks: normal diet (Normal), high-fat diet (HF control; 37% calorie from fat) and high-fat diet supplemented with GSW (HF-GSW; 1% wt/wt). Supplementation of GSW did not affect the body weight, food intake, daily energy intake, white adipose tissue weights and plasma leptin level in high-fat fed mice. Plasma and hepatic cholesterol and triglyceride contents were significantly higher in the HF control group than in the Normal group; however, GSW supplement significantly lowered plasma triglyceride and hepatic cholesterol concentrations compared to the HF control group. GSW supplement significantly increased fecal excretion of triglyceride in high-fat fed mice. Hepatic carnitine palmitoyl transferase activity was significantly higher in the HF-GSW group than in the HF control group, while fatty acid ${\beta}$-oxidation tended to be lowered by GSW supplement. Erythrocyte superoxide dismutase activity was also significantly higher in the HF-GSW group than in the HF control group and glutathione peroxidase activity tended to be lowered in HF-GSW group. The GSW supplement significantly lowered erythrocyte lipid peroxidation level compared to the HF control group. Accordingly, these results suggest that GSW can be considered as a lipid-lowering agent and as being effective for enhancing erythrocyte antioxidant defense system in high-fat diet-induced obese mice.

Anti-Lipogenic Effect of Functional Cereal Samples on High Sucrose Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice (고당식이로 유도된 비알코올성 지방간 마우스에서 기능성 잡곡의 지질 대사 개선 효과)

  • Lee, Ko-Eun;Song, Jia-Le;Jeong, Byung-Jin;Jeong, Jong-Sung;Huh, Tae-Gon;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.789-796
    • /
    • 2016
  • The anti-lipogenic effect of cereal samples on high sucrose diet (HSD)-induced non-alcoholic fatty liver disease (NAFLD) in mice was studied. We divided C57BL/6 mice into various groups based on 8 weeks of treatment with three types of cereal samples (HSD+WR, HSD diet containing 40% white rice; HSD+MCG, HSD diet containing 40% mixed cereal grain; HSD+AO-MCG, HSD diet containing 40% mixed antiobesity-cereal grain). After the experimental period, body weight changes, liver weights, serum lipid profiles, and hepatic fatty acid metabolism-related gene expression levels were determined. We found that HSD+WR, HSD+MCG, and HSD+AO-MCG treatments reduced body weight and liver weight, especially HSD+MCG and HSD+AO-MCG effectively reduced levels of serum triglycerides, total cholesterol, and low-density lipoprotein cholesterol. However, high density lipoprotein cholesterol levels increased compared to the control group. Furthermore, expression of hepatic lipogenic genes such as sterol regulatory element-binding protein-1c, acetyl-coenzyme A carboxylase, fatty acid synthase, stearoyl-coenzyme A desaturase-1, cluster of differentiation, and $PPAR-{\gamma}$ (peroxisome proliferator activated receptor ${\gamma}$) decreased, whereas expression of ${\beta}-oxidation$ genes such as $PPAR-{\alpha}$ and carnitine palmitoyl transferase-1 increased following HSD+MCG and HSD+AO-MCG treatment compared with levels in HSD+WR and control groups. These results suggest that the functional cereal samples, especially HSD+AO-MCG treatment, improved hepatic steatosis triggered by an HSD-induced imbalance in hepatic lipid metabolism.

Acute Oral Toxicity and Anti-obesity Effect of Diglyceride Preparation Containing Conjugated Linoleic Acid in Rat (공액리놀레산 함유 디글리세라이드 식용유지 조성물의 rat에 대한 단회 경구투여독성 및 항비만 효과)

  • Hong, Soon-Gi;Park, Chae-Kyu;Lee, Mi-Ja;Chung, Shin-Gyo;Lee, Young-Ho;Hyun, Sun-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.320-325
    • /
    • 2009
  • The present study was carried out to investigate the acute oral toxicity and anti-obesity effects of a diglyceride preparation containing conjugated linoleic acid (DG+CLA). To test its acute oral toxicity, the DG+CLA was injected into 30 rats (15 males and 15 females) at dosage of 2,000 mg/kg and 5,000 mg/kg. Mortality rates, clinical signs, and body weight changes were monitored for 14 days following administration. According to the results, the lethal dose ($LD_50$) of DG+CLA was determined as >5,000 mg/kg in both sexes. There were no significant changes in general conditions, clinical signs, body weight, and gross lesions between the vehicle control and DG+CLA groups. For the anti-obesity studies, obese Zucker rats were randomly divided into 4 groups and fed saline, soybean oil, diglyceride, and DG+CLA, respectively, for 8 weeks. The DG+CLA groups presented significant differences in body weight, food efficiency ratio, serum lipid levels, and fat weight. Overall, the results showed that the DG+CLA did not have acute oral toxicity and reduced body weight, serum lipid levels, and fat gain.

Changes in Quality of Citron Juice by Storage and Extraction Conditions (유자과즙의 저장 및 착즙조건에 따른 품질변화)

  • Park, Kee-Jai;Jung, Sung-Won;Kim, Jong-Hoon;Jeong, Jin-Woong
    • Applied Biological Chemistry
    • /
    • v.38 no.2
    • /
    • pp.141-146
    • /
    • 1995
  • Changes of physicochemical properties of citron juice prepared by two different extraction methods, rotary-crushing and belt-pressing method, were investigated during the storage at $5^{\circ}C$ and $-20^{\circ}C$. Temperature drop of citron juice extracted by belt-pressing method was faster than that of citron juice prepared by rotary-crushing method and its freezing point was $0.8{\sim}0.9^{\circ}C$. During the storage, pH of stored citron juice with rotary-crushing method was increased up to 3.5 after 6 months storage while that of citron juice extracted by belt-pressing method was not changed significantly during the same storage time. Acidity of rotary-crushed citron juice was reduced a little more than that of belt-pressed citron juice during the storage. However, changes of soluble solid content were influenced largely by the storage temperature than by the extraction method. Contents of formol nitrogen and vitamin C were reduced remarkably in all of stored citron juice and $92{\sim}82%$ of farmol nitrogen and $72{\sim}43%$ of vitamin C were remained after 6 months of storage. Among the changes of color value, L values were reduced in the whole stored citron juice and a and b value had a different change pattern respectively according to the extraction and storage temperature. Changes in the content of both amino acid and fatty acid compositions was also observed after same storage period. Especially, in the case of change of fatty acid composition, content of linoleic acid and linolenic acid were reduced after 6 months storage, while those of palmitic acid, stearic acid and oleic acid were increased.

  • PDF

Processed Panax ginseng, sun ginseng, inhibits the differentiation and proliferation of 3T3-L1 preadipocytes and fat accumulation in Caenorhabditis elegans

  • Lee, Hyejin;Kim, Jinhee;Park, Jun Yeon;Kang, Ki Sung;Park, Joeng Hill;Hwang, Gwi Seo
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.257-267
    • /
    • 2017
  • Background: Heat-processed ginseng, sun ginseng (SG), has been reported to have improved therapeutic properties compared with raw forms, such as increased antidiabetic, anti-inflammatory, and antihyperglycemic effects. The aim of this study was to investigate the antiobesity effects of SG through the suppression of cell differentiation and proliferation of mouse 3T3-L1 preadipocyte cells and the lipid accumulation in Caenorhabditis elegans. Methods: To investigate the effect of SG on adipocyte differentiation, levels of stained intracellular lipid droplets were quantified by measuring the oil red O signal in the lipid extracts of cells on differentiation Day 7. To study the effect of SG on fat accumulation in C. elegans, L4 stage worms were cultured on an Escherichia coli OP50 diet supplemented with $10{\mu}g/mL$ of SG, followed by Nile red staining. To determine the effect of SG on gene expression of lipid and glucose metabolism-regulation molecules, messenger RNA (mRNA) levels of genes were analyzed by real-time reverse transcription-polymerase chain reaction analysis. In addition, the phosphorylation of Akt was examined by Western blotting. Results: SG suppressed the differentiation of 3T3-L1 cells stimulated by a mixture of 3-isobutyl-1-methylxanthine, dexamethasone, and insulin (MDI), and inhibited the proliferation of adipocytes during differentiation. Treatment of C. elegans with SG showed reductions in lipid accumulation by Nile red staining, thus directly demonstrating an antiobesity effect for SG. Furthermore, SG treatment down-regulated mRNA and protein expression levels of peroxisome proliferator-activated receptor subtype ${\gamma}$ ($PPAR{\gamma}$) and CCAAT/enhancer-binding protein-alpha ($C/EBP{\alpha}$) and decreased the mRNA level of sterol regulatory element-binding protein 1c in MDI-treated adipocytes in a dose-dependent manner. In differentiated 3T3-L1 cells, mRNA expression levels of lipid metabolism-regulating factors, such as amplifying mouse fatty acid-binding protein 2, leptin, lipoprotein lipase, fatty acid transporter protein 1, fatty acid synthase, and 3-hydroxy-3-methylglutaryl coenzyme A reductase, were increased, whereas that of the lipolytic enzyme carnitine palmitoyltransferase-1 was decreased. Our data demonstrate that SG inversely regulated the expression of these genes in differentiated adipocytes. SG induced increases in the mRNA expression of glycolytic enzymes such as glucokinase and pyruvate kinase, and a decrease in the mRNA level of the glycogenic enzyme phosphoenol pyruvate carboxylase. In addition, mRNA levels of the glucose transporters GLUT1, GLUT4, and insulin receptor substrate-1 were elevated by MDI stimulation, whereas SG dose-dependently inhibited the expression of these genes in differentiated adipocytes. SG also inhibited the phosphorylation of Akt (Ser473) at an early phase of MDI stimulation. Intracellular nitric oxide (NO) production and endothelial nitric oxide synthase mRNA levels were markedly decreased by MDI stimulation and recovered by SG treatment of adipocytes. Conclusion: Our results suggest that SG effectively inhibits adipocyte proliferation and differentiation through the downregulation of $PPAR{\gamma}$ and $C/EBP{\alpha}$, by suppressing Akt (Ser473) phosphorylation and enhancing NO production. These results provide strong evidence to support the development of SG for antiobesity treatment.