• Title/Summary/Keyword: Carbonation process

Search Result 151, Processing Time 0.024 seconds

Effect of Temperature on the Formation of Vaterite in Ca(OH)2-CH3OH-H2O-CO2 System (Ca(OH)2-CH3OH-H2O-CO2계에서 바테라트의 생성에 미치는 반응온도의 영향)

  • Park, Jong-Lyuck;Choi, Sang-Kuen;Kim, Byoung-Gon;Lee, Jae-Jang
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1143-1148
    • /
    • 2002
  • Precipitated calcium carbonate is one of the most versatile mineral fillers and is consumed in an wide range of products including paper, paint, plastics, rubber, textiles, sealants, adhesives and printing ink and can be produced by several methods. Calcium carbonate has three isomorphism; vaterite, aragonite and calcite, with numerous variations of morphology in the natural mineral or organism. Formation process of vaterite in the reaction of system $Ca(OH)_2-CH_3OH-H_2O-CO_2$ were investigated by measuring the electrical conductivity, $Ca^{2+}$ ion concentration, pH in the slurries and by means of X-ray diffraction and electron microscopic observation. It was clearly established that the reaction temperature is important variable in the carbonation process; in general over 50${\circ}C$, the vaterite was precipitated with the calcite and aragonite. SEM and XRD observations revealed that the vaterite formation could be prepared the temperature range of 40 to 50${\circ}C$ and mean size of particles in this range is controlled from 0.5 to 0.8 ${\mu}m$.

A Study on the Behavior of Cation in Cement Paste (시멘트 경화체내 양이온 거동에 관한 연구)

  • 윤성진;소승영;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.549-554
    • /
    • 2001
  • It is possible for concrete using sea sand to contain chloride ion as well as cation such as Na$^{+}$and $K^{+}$ during mixing process. It is known that some cations such as Na$^{+}$and $K^{+}$ remain in pore solution without binding In this study, therefore, we intend to inspect the behavior of cations in cement paste as well as NaCl, CaCl$_2$ and KCI through analysis of pore solution extracted from cement paste with high pressure vessel. As a result, increase of alkali ions by adding sea sand and admixtures to the fresh concrete means use of the cement contained high alkali contents. In this case, alkali ions in pore solution can decrease durability of cement products causing alkali-aggregate reaction or accelerated carbonation. So it needs to be studied.studied.

  • PDF

Durability Characteristics of Cellulose Fiber Reinforced Cement Composite (셀룰로우스 섬유 보강 시멘트 복합체의 내구성에 관한 연구)

  • 원종필;문제길
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.1-6
    • /
    • 1996
  • Cellulose fiber reinforced cement composites manufactured by the slurry-dewatering process have found broad applications in thin cement products as replacement for asbestos cement. This paper focuses on the durability characteristics of these composites under different aging conditions. The effects of wetting-drying and freezing-thaw cycles, carbonation, and exposure to hot and humid environments on the structure and properties of cellulose fiber-cement composites were investigated. The predominant mechanisms of aging in the composites were identified through investigation of structure-property relationships. Measures to control these aging mechanisms were diversed and evaluated. Refined cellulose fiber-cement composites are shown to possess excellent durability characteristics under the effects of various aging processes.

  • PDF

The Properties of Concrete containing Waste-glass Powder (혼화재로서 폐유리 미분말을 사용한 콘크리트의 특성 평가)

  • Choi, Sung-Woo;Ryu, Deug-Hyun;Kim, Jun-Hyoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.222-223
    • /
    • 2017
  • In the automotive industry, such as scrap metal and plastic scrap process is being recycled. Although the glass beads are used as road paving or other additives and processing crushing, recycling is known that there are limits. The utilization of waste glass was evaluated as a concrete admixture by using powder characteristics and chemical composition of the glass. As a result of using waste-glass powder as an admixture, it is difficult to expect the pozzolanic effect, but it is found that it can increase the fluidity of concrete and ensure the durability performance in the appropriate amount range.

  • PDF

Propose of Eco-efficiency Evaluation Method for Concrete (콘크리트의 에코효율성 평가방법 제안에 관한 연구)

  • Kim, Tae-Hyoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.187-188
    • /
    • 2016
  • The purpose of this study is to develop a method of evaluating eco-efficiency of concrete based on environmental load emission, manufacturing cost, and durability in the concrete production process. Eco-efficiency is an advanced concept used to evaluate eco-friendliness of concrete. This technique intends to produce environment-friendly and highly durable concrete while minimizing environmental load on the ecosystem and manufacturing cost based on the results of service life assessment on concrete. This technique can be utilized to efficiently evaluate sustainability of concrete and find methods to improve it. Furthermore, the vision of this study is to contribute to implementation of environment-friendly concrete and construction industry.

  • PDF

pH Characteristics of the Recycled Aggregate Being carbonated by Dry Ice (드라이아이스로 탄산화 처리한 순환골재의 pH 특성)

  • Hong, Sung-Rog;Bok, Young-Jae;Sung, Jong-Hyun;Lee, Il-Sun;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.337-338
    • /
    • 2013
  • Recent research is needed for the reduction of the pH of the recycled aggregates, recycled aggregates for alkali social problems have emerged. This was confirmed through preliminary experiments using a self-made reactor with dry ice, the possibility of reducing the pH of the recycled aggregates. The pH reduction of coarse recycled aggregates plant was made to apply the field to the middle of construction waste treatment process to reduce the pH of the plant room, and measured the pH change with time. The measurement results showed that dry ice after the reaction, the pH of the aggregate 5% reduction than untreated recycled aggregates.

  • PDF

Genetic algorithm in mix proportion design of recycled aggregate concrete

  • Park, W.J.;Noguchi, T.;Lee, H.S.
    • Computers and Concrete
    • /
    • v.11 no.3
    • /
    • pp.183-199
    • /
    • 2013
  • To select a most desired mix proportion that meets required performances according to the quality of recycled aggregate, a large number of experimental works must be carried out. This paper proposed a new design method for the mix proportion of recycled aggregate concrete to reduce the number of trial mixes. Genetic algorithm is adapted for the method, which has been an optimization technique to solve the multi-criteria problem through the simulated biological evolutionary process. Fitness functions for the required properties of concrete such as slump, density, strength, elastic modulus, carbonation resistance, price and carbon dioxide emission were developed based on statistical analysis on conventional data or adapted from various early studies. Then these fitness functions were applied in the genetic algorithm. As a result, several optimum mix proportions for recycled aggregate concrete that meets required performances were obtained.

Bulky carbon layer inlaid with nanoscale Fe2O3 as an excellent lithium-storage anode material

  • Nguyen, Thuy-An;Lee, Sang-Wha
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.140-145
    • /
    • 2018
  • Bulky carbon layer uniformly distributed with nanoscale $Fe_2O_3$ was prepared via a direct carbonation of $Fe^{3+}$-polyacrylonitrile complexes at $700^{\circ}C$ under $N_2$ flow. The iron oxide carbon composites exhibited an excellent cycling performance for lithium storage with a reversible capacity of ${\sim}810mAh\;g^{-1}$ after 250 cycles at a current rate of $100mA\;g^{-1}$. The enhancement was mainly attributed to dual functions of bulky carbon layer which facilitated the lithium-ion diffusion and accommodated the volume changes of active $Fe_2O_3$ during charge/discharge process. Our novel chemical strategy is quite effective for scalable fabrication of high capacity lithium-storage materials.

Two-dimensional water seepage monitoring in concrete structures using smart aggregates

  • Zou, Dujian;Li, Weijie;Liu, Tiejun;Teng, Jun
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.313-323
    • /
    • 2018
  • The presence of water inside concrete structures is an essential condition for the deterioration of the structures. The free water in the concrete pores and micro-cracks is the culprit for the durability related problems, such as alkali-aggregate reaction, carbonation, freeze-thaw damage, and corrosion of steel reinforcement. To ensure the integrity and safe operation of the concrete structures, it is very important to monitor water seepage inside the concrete. This paper presents the experimental investigation of water seepage monitoring in a concrete slab using piezoelectric-based smart aggregates. In the experimental setup, an $800mm{\times}800mm{\times}100mm$ concrete slab was fabricated with 15 SAs distributed inside the slab. The water seepage process was monitored through interrogating the SA pairs. In each SA pair, one SA was used as actuator to emit harmonic sine wave, and the other was used as sensor to receive the transmitted stress wave. The amplitudes of the received signals were able to indicate the water seepage process inside the concrete slab.

EVALUATION OF A PENETRATION-REINFORCING AGENT TO PREVENT THE AGING OF CONCRETE

  • Cho, Myung-Sug;Noh, Jea-Myoung;Song, Young-Chul
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1127-1134
    • /
    • 2009
  • Concrete has three major properties after a penetration-reinforcing agent is applied on its surface. First, the durability is improved by the sol-gel process of synthesized material from the polycondensation of TEOS (tetra-ethoxyorthosilicate) and acrylate monomer. Second, the capability to absorb impact energy is reinforced through the formation of a soft and flexible layer of organic monomers by Tea (Tetra Ethyl Amin). Third, the capability to prevent deterioration is enhanced by adding isobutyl-orthosilicate and alcohol. The performance and application of an agent developed through the synthesis of organic and inorganic material in an effort to prevent concrete from deterioration and improve the durability of concrete structures were verified in diverse experiments. The results of these experiments showed that the application of the proposed penetration-reinforcing agent has the effect of increasing the compressive strength by filling up the internal pores of concrete with physically and chemically stable compounds after penetrating the concrete. It also improves the durability against the deterioration factors such as salt water damage, carbonation, freezing and thawing, and compound deterioration. Therefore, it is confirmed that the penetration-reinforcing agent is a useful substance for the management and repair of concrete structures.