• Title/Summary/Keyword: Carbonation curing

Search Result 93, Processing Time 0.03 seconds

A Basic Study on the Development of Optimum Carbonation Curing Techniques for Concrete Using Supercritical CO2 (초임계 CO2를 활용한 콘크리트의 최적 탄산화양생기법 개발에 관한 기초적 연구)

  • Hong, Sung-Jun;Ryu, Dong-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.91-92
    • /
    • 2022
  • This study is a basic study on carbonation curing technology of concrete using supercritical CO2, and carbonation curing was carried out by exposing concrete to supercritical CO2 for a certain period of time. In the case of conventional carbonation curing, long-term curing was performed for several weeks by controlling the concentration of CO2, but by using supercritical CO2, more rapid carbonation curing was carried out using constant temperature and pressure conditions to improve durability through surface modification of concrete. This experiment was conducted with the goal of deriving the optimal carbonation curing conditions by measuring the carbonation depth by exposing concrete for a certain period of time to conditions above the supercritical level. As a result, it was confirmed that the carbonation depth increased as the curing time increased, and the curing time could be shortened compared to the carbonation curing according to the existing CO2 concentration.

  • PDF

The effect of combined carbonation and steam curing on the microstructural evolution and mechanical properties of Portland cement concrete

  • Kim, Seonhyeok;Amr, Issam T.;Fadhel, Bandar A.;Bamagain, Rami A.;Hunaidy, Ali S.;Park, Solmoi;Seo, Joonho;Lee, H.K.
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.367-374
    • /
    • 2021
  • The present study investigated the effect of the combined carbonation and steam curing on the physicochemical properties and CO2 uptake of the Portland cement concrete. Four different curing regimes were adopted during the initial 10 h of curing to evaluate the potential of carbonation curing as an alternative to conventional steam curing in the precast concrete industry from environmental and practical viewpoints. Four combinations of carbonation and steam curing conditions were applied as curing regimes to the samples at an early age. The test results indicated that the samples treated with the combined carbonation and steam curing exhibited higher early strength development compared to the other samples, signifying that carbonation curing can reduce the production time of precast concrete. Furthermore, the CO2 uptake capacity of the samples was calculated and found to be as high as 18% with respect to the mass of the paste samples. Hence, the simultaneous utilization of steam and CO2 for the fabrication of precast concrete members has the potential to make precast concrete greener and more cost-effective.

Evaluation of Mechanical Properties and Microstructure of Calcium Silicate Cement-Based Paste according to Carbonation Curing Conditions (Calcium silicate cement-based paste의 탄산화 양생 조건에 따른 역학적 특성 및 미세구조 평가)

  • Choi, Chang-Keun;Ryu, Dong-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.93-94
    • /
    • 2023
  • This study evaluated the mechanical properties and microstructure of calcium silicate cement based paste according to carbonation curing conditions. As a result, both compressive strength and carbonation depth increased with the carbonation curing period.

  • PDF

Review on Carbonation Curing and Thermal Stability of Calcium Sulfoaluminate Cement (칼슘설포알루미네이트 시멘트의 탄산화 양생과 열 안정성에 관한 검토)

  • Wu, Xuanru;Kunal Krishna, Das;Jang, Jeong Gook
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.53-54
    • /
    • 2023
  • In recent decades, climate change has become an issue of global importance. The calcium sulfoaluminate (CSA) cement emits lower CO2 than the Portland cements while manufacturing. However, ettringite, which is a main hydration product of CSA cement, starts dehydrating at a temperature above 100℃, hence it may limit the CSA cement for high temperature application. Recently, an early carbonation curing of cement-based material has been extensively studied in terms of carbon neutralization. The carbonation curing of CSA cement has a potential to transform the AFt and AFm phases into calcium carbonate, and the transformation of unstable hydrates to stable hydrates can increase the resistance to elevated temperature. This review study summarizes and discusses the carbonation curing effect of CSA cement and the thermal stability of CSA cement exposed to elevated temperatures.

  • PDF

Effects of carbonation on hydration characteristics of ordinary Portland cement at pre-curing condition

  • Kim, Gwang Mok
    • Journal of Urban Science
    • /
    • v.11 no.1
    • /
    • pp.21-28
    • /
    • 2022
  • Raman spectroscopy is effective to investigate functional groups via molecular vibration. The technique offers the structural information of compounds including subtle changes in the chemical composition of local atomic coordination without critical damage. Thus, the effect of carbonation on the hydration characteristics of Portland cement under pre-curing conditions for carbonation was investigated via Raman spectroscopy in the present study. Gaseous CO2 was injected within 60 seconds, and the reaction time was varied from 0 minute to 90 minutes. The test results indicated that the Ca/Si ratio of C-S-H reduced immediately after mixing and then the C-S-H with a relatively high Ca/Si ratio coexisted as the reaction time increased. The calcium carbonates formed in the present study included calcite and amorphous calcium carbonates. The test results via Raman spectroscopy provide valuable information about the carbonation characteristics of OPC under pre-curing conditions for carbonation.

Optimization of Carbonated Cellulose Fiber-Cement Composites

  • Won, Jong-Pil;Bae, Dong-In
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.79-89
    • /
    • 2000
  • This research developed an accelerated curing processe for cellulose fiber reinforced cement composites using vigorous reaction between carbon dioxide and cement paste. A wet-processed cellulose fiber reinforced cement system was considered. Carbonation curing was used to complement conventional accelerated curing. The parametric study followed by optimization investigation indicated that the carbonation curing can enhance the productivity and energy efficiency of manufacturing cellulose fiber reinforced cement composites. This also adds environmental benefits to the technical and economical advantages of the technology.

  • PDF

Carbonation Behavior of GGBFS-based Concrete with Cold Joint Considering Curing Period (재령 변화에 따른 콜드조인트를 가진 GGBFS 콘크리트의 탄산화 거동)

  • Cho, Sung-Jun;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.259-266
    • /
    • 2018
  • In the work, the carbonation behavior and strength characteristics in cold-joint concrete are evaluated for OPC(Ordinary Portland Cement) and GGBFS(Ground Granulated Blast Furnace Slag)concrete considering three levels of curing age (28, 91 and 365 days). The compressive strength in GGBFS concrete is level of 86% of OPC concrete at the 91 days of curing period, but is level of 107% at 365 curing days due to hydration reaction. Carbonation velocities in both OPC and GGBFS concrete significantly decease after 91 curing days. The effect of cold joint on carbonation is evaluated to be small in GGBFS concrete. The increasing ratios of carbonation velocity in cold joint are 1.06 and 1.33 for 28-day and 365-day curing condition, respectively. However they decreases to 1.08 and 1.04 for GGBFS concrete for the same curing conditions.

An Experimental Study on the Effect of Curing Condition and Moisture Content Ratio on the Carbonation and Air Permeability of Concrete (양생조건 및 함수율이 콘크리트의 중성화 및 투기성에 미치는 영향에 관한 실험적 연구)

  • 유재강;이강우;강석표;권영진;배기선;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.403-408
    • /
    • 2000
  • Hardened concrete contains pores of varying types and sizes, and therefore the transport of air through concrete can be considered. The rate of permeability will not only depend on the continuity of pores, but also on the moisture contents in concrete. In this paper, the effects of curing conditions and moisture content ratios on the carbonation and air permeability are investigated according to the accelerated carbonation test. The results are follows. 1) Compressive strength, carbonation velocity and air permeability are influenced by the moisture content and curing method. 2) The relationship between carbonation velocity coefficient and air permeability coefficient has been quite well established.

  • PDF

Carbonation of GGBFS paste and mortar: Effect of γ-Dicalcium Silicate Replacement to Mechanical Properties and Microstructure Characteristics (GGBFS 페이스트 및 모르타르의 탄산 : γ-Dicalcium 규산염 대체가 기계적 특성 및 미세 구조 특성에 미치는 영향)

  • Tran, Duc Thanh;Lee, Yun-su;Yan, Sirui;Lee, Han-seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.71-72
    • /
    • 2020
  • γ-dicalcium silicate (γ-C2S) is characterized by its strong carbonation reactivity and has the prospect to be utilized as a building material with the added benefit of CO2 capture. This paper aims to point out the impact of γ-C2S on the microstructure characteristics and mechanical properties of GGBFS paste, and mortar samples. Three curing conditions including un-carbonation, natural carbonation, and accelerated carbonation were applied to the research. Besides, hydration products after the carbonation process are also detected. What's more, the carbonation treatment method also meets the requirement of capture more greenhouse gas and recycles the waste products of metallurgy.

  • PDF

Influence of curing condition and carbonation on electrical resistivity of concrete

  • Yoon, In-Seok;Hong, Seongwon;Kang, Thomas H.K.
    • Computers and Concrete
    • /
    • v.15 no.6
    • /
    • pp.973-987
    • /
    • 2015
  • The electrical resistivity of air-dried, saturated, and carbonated concretes with different mixture proportions was monitored to evaluate and quantify the influence of the age of the specimen, carbonation, and curing condition. After 28 days of curing, four prepared specimens were stored in a vacuum chamber with 5% $CO_2$ for 330 days to make carbonated specimens. Four of the specimens were placed in water, and four specimens were cured in air until the end of the experiments. It was observed that the electrical resistivity of the carbonated specimens increased as carbonation progressed due to the decrease of porosity and the increase of hydrated products. Therefore, in order to estimate the durability of concrete, its carbonation depth was used as the measurement of electrical resistivity. Moreover, an increase of electrical resistivity for air-dried and saturated concretes was observed as a function of age of the specimen. From the relationship between chloride diffusivity provided by Yoon et al. (2007) and the measurements of electrical resistivity, it is expected that the results well be of significant use in calibrating chloride diffusivity based on regular measurements of electrical resistivity during concrete construction.