DOI QR코드

DOI QR Code

Effects of carbonation on hydration characteristics of ordinary Portland cement at pre-curing condition

  • Kim, Gwang Mok (한국지질자원연구원 광물자원연구본부)
  • Published : 2022.12.15

Abstract

Raman spectroscopy is effective to investigate functional groups via molecular vibration. The technique offers the structural information of compounds including subtle changes in the chemical composition of local atomic coordination without critical damage. Thus, the effect of carbonation on the hydration characteristics of Portland cement under pre-curing conditions for carbonation was investigated via Raman spectroscopy in the present study. Gaseous CO2 was injected within 60 seconds, and the reaction time was varied from 0 minute to 90 minutes. The test results indicated that the Ca/Si ratio of C-S-H reduced immediately after mixing and then the C-S-H with a relatively high Ca/Si ratio coexisted as the reaction time increased. The calcium carbonates formed in the present study included calcite and amorphous calcium carbonates. The test results via Raman spectroscopy provide valuable information about the carbonation characteristics of OPC under pre-curing conditions for carbonation.

Keywords

Acknowledgement

This work was supported by Korea Institute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea government(MOTIE)(20212010200080, In-situ carbonation technology development using CO2 emissions from cement industry).

References

  1. Buzatu, A., Dill, H. G., Buzgar, N., Damian, G., Maftei, A. E., Apopei, A. I. (2016), "Efflorescent sulfates from Baia Sprie mining area (Romania)-acid mine drainage and climatological approach." Science of the Total Environment, Vol. 542, pp. 629-641. https://doi.org/10.1016/j.scitotenv.2015.10.139
  2. De La Pierre, M., Carteret, C., Maschio, L., Andre, E., Orlando, R., Dovesi, R. (2014), "The Raman spectrum of CaCO3 polymorphs calcite and aragonite: a combined experimental and computational study." The Journal of Chemical Physics, Vol. 140(16), pp. 164509.
  3. Fernandez-Carrasco, L., Rius, J., Miravitlles, C. (2008), "Supercritical carbonation of calcium aluminate cement." Cement and concrete research, Vol. 38(8-9), pp. 1033-1037. https://doi.org/10.1016/j.cemconres.2008.02.013
  4. Florides, G. A., Christodoulides, P. (2009), "Global warming and carbon dioxide through sciences." Environment international, Vol. 35(2), pp. 390-401. https://doi.org/10.1016/j.envint.2008.07.007
  5. Fu, F., Tian, L. G., Xu, S., Xu, X. G., Hu, X. B. (2014), "Synthesis of stable ACC using mesoporous silica gel as a support." Nanoscale Research Letters, Vol. 9(1), pp. 1-6. https://doi.org/10.1186/1556-276X-9-1
  6. Gabrielli, C., Jaouhari, R., Joiret, S., Maurin, G. (2000), "In situ Raman spectroscopy applied to electrochemical scaling. Determination of the structure of vaterite." Journal of Raman Spectroscopy, Vol. 31(6), pp. 497-501. https://doi.org/10.1002/1097-4555(200006)31:6<497::AID-JRS563>3.0.CO;2-9
  7. Garbev, K., Stemmermann, P., Black, L., Breen, C., Yarwood, J., Gasharova, B. (2007), "Structural features of C-S-H (I) and its carbonation in air-a Raman spectroscopic study. Part I: fresh phases." Journal of the American Ceramic Society, Vol. 90(3), pp. 900-907. https://doi.org/10.1111/j.1551-2916.2006.01428.x
  8. Garg, N., Wang, K., Martin, S. W. (2013), "A Raman spectroscopic study of the evolution of sulfates and hydroxides in cement-fly ash pastes." Cement and Concrete Research, Vol. 53, pp. 91-103. https://doi.org/10.1016/j.cemconres.2013.06.009
  9. He, R., Zhang, S., Zhang, X., Zhang, Z., Zhao, Y., Ding, H. (2021), "Copper slag: The leaching behavior of heavy metals and its applicability as a supplementary cementitious material." Journal of Environmental Chemical Engineering, Vol. 9(2), pp. 105132.
  10. Herath, C., Gunasekara, C., Law, D. W., Setunge, S. (2020), "Performance of high volume fly ash concrete incorporating additives: A systematic literature review." Construction and Building Materials, Vol. 258, pp. 120606.
  11. Kavetskyy, T., Vakiv, M., Shpotyuk, O. (2007), "Charged defects in chalcogenide vitreous semiconductors studied with combined Raman scattering and PALS methods." Radiation Measurements, Vol. 42(4-5), pp. 712-714. https://doi.org/10.1016/j.radmeas.2007.02.059
  12. Kashef-Haghighi, S., Ghoshal, S. (2010), "CO2 sequestration in concrete through accelerated carbonation curing in a flow-through reactor." Industrial & engineering chemistry research, Vol. 49(3), pp. 1143-1149. https://doi.org/10.1021/ie900703d
  13. Kihara, K., Hirose, T., Shinoda, K. (2005), "Raman spectra, normal modes and disorder in monoclinic tridymite and its higher temperature orthorhombic modification." Journal of Mineralogical and Petrological Sciences, Vol. 100(3), pp. 91-103. https://doi.org/10.2465/jmps.100.91
  14. Liu, F., Sun, Z., Qi, C. (2015), "Raman spectroscopy study on the hydration behaviors of Portland cement pastes during setting." Journal of Materials in Civil Engineering, Vol. 27(8), pp. 04014223.
  15. McConnell, J., Stone, E. N., PE, E., Yost, J. R., Sustainability, S. E. I., Bridge, S. (2017), "Optimizing Concrete for More Sustainable Bridges" STRUCTURE, Vol. 19.
  16. McMillan, P. (1984), "Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy." American Mineralogist, Vol. 69(7-8), pp. 622-644.
  17. Mehta, P. K. (2002), "Greening of the concrete industry for sustainable development." Concrete international, Vol. 24(7), pp. 23-28. Mohacek-Grosev, V., Durokovic, M.,
  18. Maksimovic, A. (2021), "Combining raman spectroscopy, dft calculations, and atomic force microscopy in the study of clinker materials." Materials, Vol. 14(13), pp. 3648.
  19. Nath, P., Sarker, P. (2011), "Effect of fly ash on the durability properties of high strength concrete." Procedia Engineering, Vol. 14, pp. 1149-1156. https://doi.org/10.1016/j.proeng.2011.07.144
  20. Ortaboy, S., Li, J., Geng, G., Myers, R. J., Monteiro, P. J., Maboudian, R., Carraro, C. (2017), "Effects of CO2 and temperature on the structure and chemistry of C-(A)-S-H investigated by Raman spectroscopy." RSC advances, Vol. 7(77), pp. 48925-48933. https://doi.org/10.1039/C7RA07266J
  21. Potgieter-Vermaak, S. S., Potgieter, J. H., Van Grieken, R. (2006), "The application of Raman spectrometry to investigate and characterize cement, Part I: A review." Cement and concrete research, Vol. 36(4), pp. 656-662. https://doi.org/10.1016/j.cemconres.2005.09.008
  22. Rungchet, A., Poon, C. S., Chindaprasirt, P., Pimraksa, K. (2017), "Synthesis of low-temperature calcium sulfoaluminate-belite cements from industrial wastes and their hydration: Comparative studies between lignite fly ash and bottom ash." Cement and Concrete Composites, Vol. 83, pp. 10-19. https://doi.org/10.1016/j.cemconcomp.2017.06.013
  23. Shi, C., He, F., Wu, Y. (2012), "Effect of pre-conditioning on CO2 curing of lightweight concrete blocks mixtures." Construction and Building materials, Vol. 26(1), pp. 257-267. https://doi.org/10.1016/j.conbuildmat.2011.06.020
  24. Sun, H., Zhang, X., Zhao, P., Liu, D. (2021), "Effects of Nano-Silica Particle Size on Fresh State Properties of Cement Paste." KSCE Journal of Civil Engineering, Vol. 25(7), pp. 2555-2566. https://doi.org/10.1007/s12205-021-0902-3
  25. Tan, B., Okoronkwo, M. U., Kumar, A., Ma, H. (2020), "Durability of calcium sulfoaluminate cement concrete." Journal of Zhejiang University-SCIENCE A, Vol. 21(2), pp. 118-128. https://doi.org/10.1631/jzus.a1900588
  26. Tang, C., Ling, T. C., Mo, K. H. (2021), "Raman spectroscopy as a tool to understand the mechanism of concrete durability-a review." Construction and Building Materials, Vol. 268, pp. 121079.
  27. Taylor, H. F. (1997), "Cement chemistry" Vol. 2, pp. 459. London: Thomas Telford.
  28. Torres-Carrasco, M., del Campo, A., de la Rubia, M. A., Reyes, E., Moragues, A., Fernandez, J. F. (2017), "New insights in weathering analysis of anhydrous cements by using high spectral and spatial resolution Confocal Raman Microscopy." Cement and Concrete Research, Vol. 100, pp. 119-128. https://doi.org/10.1016/j.cemconres.2017.06.003
  29. Wang, D., Hamm, L. M., Bodnar, R. J., Dove, P. M. (2012), "Raman spectroscopic characterization of the magnesium content in amorphous calcium carbonates." Journal of Raman Spectroscopy, Vol. 43(4), pp. 543-548. https://doi.org/10.1002/jrs.3057
  30. Wang, Z., Chen, Y., Xu, L., Zhu, Z., Zhou, Y., Pan, F., Wu, K. (2022), "Insight into the local CSH structure and its evolution mechanism controlled by curing regime and Ca/Si ratio." Construction and Building Materials, Vol. 333, pp. 127388.
  31. Wilson, E. B., Decius, J. C., Cross, P. C. (1980), "Molecular vibrations: the theory of infrared and Raman vibrational spectra." Courier Corporation.
  32. Worrell, E., Price, L., Martin, N., Hendriks, C., Meida, L. O. (2001), "Carbon dioxide emissions from the global cement industry." Annual review of energy and the environment, Vol. 26(1), pp. 303-329. https://doi.org/10.1146/annurev.energy.26.1.303
  33. Zhang, D., Shao, Y. (2016), "Early age carbonation curing for precast reinforced concretes." Construction and Building Materials, Vol. 113, pp. 134-143. https://doi.org/10.1016/j.conbuildmat.2016.03.048
  34. Zhang, D., Ghouleh, Z., Shao, Y. (2017), "Review on carbonation curing of cement-based materials." Journal of CO2 Utilization, Vol. 21, pp. 119-131. https://doi.org/10.1016/j.jcou.2017.07.003
  35. Zhang, Y. M., Sun, W., Yan, H. D. (2000), "Hydration of high-volume fly ash cement pastes." Cement and Concrete Composites, Vol. 22(6), pp. 445-452. https://doi.org/10.1016/S0958-9465(00)00044-5
  36. Zhong, W., Haigh, J. D. (2013), "The greenhouse effect and carbon dioxide." Weather, Vol. 68(4), pp. 100-105. https://doi.org/10.1002/wea.2072
  37. Zhu, X., Zhang, M., Yang, K., Yu, L., Yang, C. (2020), "Setting behaviours and early-age microstructures of alkali-activated ground granulated blast furnace slag (GGBS) from different regions in China." Cement and Concrete Composites, Vol. 114, pp. 103782.