• Title/Summary/Keyword: Carbonate chemistry

Search Result 293, Processing Time 0.028 seconds

Synthesis and Ionic Conductivity of Polystyrene Derivative Containing Cyclic Carbonate (Cyclic carbonate를 포함하는 polystyrene 유도체의 합성 및 이온전도 특성)

  • Kim, Doo-Hwan;Ryu, Sang-Woog
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • In this study polystyrene derivative, VBCE, having a cyclic carbonate was synthesized by Williamson reaction and polymerized to poly(VBCE) successfully in an usual polymerization conditions. The obtained polymer was blended with PEGMA and the effect of composition on the ionic conductivity was investigated. Interestingly, the ionic conductivity was decreased from $4.2{\times}10^{-5}S\;cm^{-1}$ to $3.93{\times}10^{-6}S\;cm^{-1}$ with the poly(VBCE) contents of 5.8mol%. From the DSC study, it was found that the $T_g$ of the blend was increased from $-50^{\circ}C$ to $-21^{\circ}C$ by the addition of poly(VBCE). Therefore, it is believed that the presence of a polar cyclic carbonate makes polymer matrix harder and it is necessary to design new structures less hindered the mobility of the matrix.

Understanding the Mechanism of Solid Electrolyte Interface Formation Mediated by Vinylene Carbonate on Lithium-Ion Battery Anodes (리튬 이온 배터리 음극에서 비닐렌 카보네이트가 매개하는 고체 전해질 계면 형성 메커니즘 연구)

  • Jinhee Lee;Ji-Yoon Jeong;Jaeyun Ha;Yong-Tae Kim;Jinsub Choi
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.2
    • /
    • pp.115-124
    • /
    • 2024
  • In advancing Li-ion battery (LIB) technology, the solid electrolyte interface (SEI) layer is critical for enhancing battery longevity and performance. Formed during the charging process, the SEI layer is essential for controlling ion transport and maintaining electrode stability. This research provides a detailed analysis of how vinylene carbonate (VC) influences SEI layer formation. The integration of VC into the electrolyte markedly improved SEI properties. Moreover, correlation analysis revealed a connection between electrolyte decomposition and battery degradation, linked to the EMC esterification and dicarboxylate formation processes. VC facilitated the formation of a more uniform and chemically stable SEI layer enriched with poly(VC), thereby enhancing mechanical resilience and electrochemical stability. These findings deepen our understanding of the role of electrolyte additives in SEI formation, offering a promising strategy to improve the efficiency and lifespan of LIBs.

Water chemistry controlled by drainage basin: Case study in the Han River, South Korea

  • Ryu Jong-Sik;Lee Gwang-Sik;Sin Hyeong-Seon;An Gyu-Hong;Jang Ho-Wan
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.405-407
    • /
    • 2005
  • To evaluate the main hydrogeochemical characteristics, river waters are investigated using element리 and isotopic compositions in South Korea. In this area, the chemical compositions are mostly classified into three groups; $Ca^{2+}-{HCO_3}^-$ type, $Ca^{2+}-Cl^{-}-{NO_3}^-$ type and $Ca^{2+}-{HCO_3}^{-}-Cl^{-}-{NO_3}^-$ type. These types are affected by two major factors: water-rock interaction and anthropogenic inputs such as sewage and fertilizers. Based on the values of ${\delta}^{18}O$ and ${\delta}D$, most of waters are originated from precipitation except two samples contaminated. The lithology and geography of basins mainly control the water chemistry. Elemental and isotopic compositions show that water chemistry are mainly controlled by three end members, especially by carbonate dissolution, and suggest that anthropogenic input affect the water chemistry. Also, three weathering sources are identified: silicates, dolomite and limestone.

  • PDF

Studies on the Preparation of Precipitated Calcium Carbonate(I) : Formation and Transformation of Amorphous Calcium Carbonate (침강성탄산칼슘의 제조에 관한 연구(I) : 비정질탄산칼슘의 생성과 전이)

  • Ha, Ho;Park, Seung-Soo;Lee, Hee-Cheol
    • Applied Chemistry for Engineering
    • /
    • v.3 no.3
    • /
    • pp.522-526
    • /
    • 1992
  • Carbonation process of an aqueous solution of $Ca(OH)_2$ with $CO_2$ gas at $10^{\circ}C$ has been studied to investigate the formation and transformation processes of amorphous calcium carbonate. It was suggested that the amorphous calcium carbonate consisting of spherical particles with the diameter in the range of $0.02{\sim}0.05{\mu}m$ be a non-stoichiometric $CaCO_3$ phase containing small amounts of $H_2O$ and small incorporations of $HCO^-_3$. Amorphous $CaCO_3$ is unstable in the aqueous solution and converts to calcite, and its morphology depends on the carbonate species present in the slurry such that with [$CO_3^{2-}$] prevailing, chain-like calcite composed of ultrafine colloidal particles and with [$HCO^-_3$] prevailing, rhombohedral particles of calcite are formed respectively. Therefore, morphological control of calcium carbonate crystals could be expected by the adequate controls of transformation process of the amorphous calcium carbonate.

  • PDF

Microwave-assisted Synthesis of 2H-Benzo[b][1,4]oxazin-3(4H)-ones and 1H-Pyrido[2,3-b][1,4]oxazin-2(3H)-ones via Smiles Rearrangement

  • Hua, Zuo;Kam, Kyeong-Hee;Kwon, Hee-Jin;Meng, Lijuan;Ahn, Chul-Jin;Won, Tae-Jin;Kim, Tae-Hyun;Reddy, Ch. Raji;Chandrasekhar, S.;Shin, Dong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1379-1385
    • /
    • 2008
  • Highly efficient synthesis of substituted benzo[1,4]oxazin-3-ones and pyrido[1,4]oxazin-2-ones under microwave irradiation via Smiles rearrangement is reported. Substituted benzo[1,4]oxazin-3-ones and pyrido[1,4]oxazin-2-ones were obtained by treatment of substituted 2-chlorophenols or 2-chloropyridols with N-substituted 2-chloroacetamide in the presence of potassium carbonate in MeCN and subsequent exposure to cesium carbonate in DMF. All the reactions which take 2-10 hours under conventional condition were completed successfully within a few minutes under microwave irradiation giving moderate to excellent yields.

Reprocessing of simulated voloxidized uranium-oxide SNF in the CARBEX process

  • Boyarintsev, Alexander V.;Stepanov, Sergei I.;Kostikova, Galina V.;Zhilov, Valeriy I.;Chekmarev, Alexander M.;Tsivadze, Aslan Yu.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1799-1804
    • /
    • 2019
  • The concept of a new method, the CARBEX (CARBonate EXtraction) process, was proposed for reprocessing of spent uranium oxide fuel. The proposed process is based on use of water solutions of $Na_2CO_3$ or $(NH_4)_2CO_3$ and solvent extraction (SE) by the quaternary ammonium compounds for selective recovery and purification of U from the fission products (FPs). Applying of SE allows to reach high degree of purification of U from FPs. Carrying out the processes in poorly aggressive alkaline carbonate media leads to increasing safety of SNF's reprocessing and better selectivity of separation of lanthanides and actinides. Moreover carbonate reprocessing media allows to carry out a recycling and regeneration of reagents. We have been done laboratory scale experiments on the extraction components of simulated voloxidated spent fuel in the solutions of NaOH or $Na_2CO_3-H_2O_2$ and recovery of U from carbonate solutions by SE method using carbonate of methyltrioctylammonium in toluene. It was shown that the purification factors of U from impurities of simulated FPs reached values $10^3-10^5$. The received results support our opinion that CARBEX after the further development can become more safe, simple and profitable method of spent fuel reprocessing.

A Study on N-Arylation of Indole Using Copper Nitrate or Copper Carbonate as a Catalyst (Copper Nitrate와 Copper Carbonate를 촉매로 이용한 Indole의 N-Arylation 연구)

  • Lee, Jun Young;Yang, Min Ho;Paik, Seung Uk
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.629-632
    • /
    • 2008
  • N-Arylation of indole with aryl iodides has been achieved by employing copper nitrate or copper cabonate as a catalyst, which might be more practical and economical over any other copper- or palladium-based catalysts for industrial applications. N,N'-dimethylethylenediamine was found to be the most effective with copper nitrate catalyst systems, while ethylenediamine was the most active with copper carbonate.

Chlorination of Alcohols Using Potassium Carbonate and Silicon Tetrachloride (탄산칼륨 존재하에서 사염화규소를 이용한 알코올의 염소화반응)

  • Ha, Dong Soo;Kim, Hyeung Ae
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.10
    • /
    • pp.535-540
    • /
    • 1997
  • Potassium carbonate reacts with silicon tetrachloride to form trichlorosilyloxy carbonylchloride which reacts subsequently with another molecule of silicon tetrachloride leading to phosgene eventually in chlorinated solvents. This in situ generated trichlorosilyloxy carbonylchloride or phosgene were found to be very effective for the chlorination of a wide variety of alcohols to the corresponding chlorides. Primary, secondary and benzylic alcohols were converted into corresponding chlorides when treated with silicon tetrachloride in the presence of potassium carbonate at room temperature.

  • PDF

Study for Addition Effect of Propylene Carbonate to 1-ethyl-3-methylimidazolium in Electric Double Layer Capacitors (Propylene Carbonate 첨가된 1-ethyl-3-methylimidazolium의 전기이중층 커패시터에서의 효과)

  • Kim, Hyun-Chul;Yang, Jeong-Jin;Kim, Han-Joo;Sin, Dal-Woo;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.1
    • /
    • pp.38-43
    • /
    • 2011
  • Because the ionic liquid added with Propylene carbonate(PC) at room temperature has lower viscosity than original, we considered electrochemical behavior of it in EDLC. The ionic liquid without PC which does not have ions has no problem in capacity since it has enough ions. The electrolyte resistance was decreased with decreasing viscosity. As a result of identifying high current discharge capacity, we observed that the ionic liquid had capacity of 73.12% at current density of $80\;mA/cm^{-2}$, but it increased to 81.94% at PC content of 40 vol%.