• Title/Summary/Keyword: Carbonate Rocks

Search Result 114, Processing Time 0.021 seconds

A Study on Underdevelopment Characteristics of the Wooro Cave Speleothem in Korea (우로굴 생성물 미발달 특성에 관한 연구)

  • Oh, Jong-Woo;Oh, Sung-Hoon;Kim, Won-Jin;Oh, Sung-Woo;Byun, Tae-Gun
    • Journal of the Speleological Society of Korea
    • /
    • no.70
    • /
    • pp.55-62
    • /
    • 2006
  • The Wooro cave speleothem displays comparatively very less developed characteristics due to its unactive fluviation, less soluable carbonate rocks, 3nd disconnected short voids. The Weoro cave consists of stalactite, stalagmite, flowstone, rimstone, and moonmilk, however, it is not exhibite soda straw, cave pearl, pisolites, curtain, drapery, cave flower, anthodite, cave coral, helictite. heligmite, boxwork, pendent and, cemented shield. The main cause of the underdevelopment speleothem of the Wooro cave probably less peneturated waters or less calcite compostion of the carbonate rocks.

Preliminary Study on the Formation Environment of Serpentinite occurring in Ulsan Area (울산지역 사문암의 형성환경 해석을 위한 예비연구)

  • Koh, Sang-Mo;Park, Choong-Ku;Soh, Won-Ju
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.325-336
    • /
    • 2006
  • Domestic serpentinite is one of the important industrial minerals utilizing in the iron manufacturing company such as POSCO in Korea. Serpentinite is distributed in the Ulsan Fe deposit, Andong, Hongseong-Cheongyang, and Gapyeong areas. This study tries to interpret the relationship among the formation of carbonate rocks, iron mineralization, and serpentinite alteration throughout the study of field occurrence, mineralogy, and chemical compositions. Serpentine is formed by the break-down of olivine and pyroxene of parent peridotite. The serpentinization is inferred to be formed by the hydrothermal fluid derived from intruded Cretaceous granite and the addition of meteoric water. Variation of major oxides such as $SiO_2,\;Fe_2O_3$, and MgO in serpentinized rocks are controlled by the degree of serpentinization and Fe mineralization. Variation of $Al_2O_3$ and CaO contents of altered rocks is dependent on the amount of the residual minerals such as calcite and homblende, and on the degree of chloritization. The presence of carbonate rocks reported in the sedimentary origin or igneous origin (carbonatite) provided a geological environment to form skarn type Fe deposit regardless of its origin. The geological processes of Ulsan Fe deposits are inferred to be formed as the order of the formation of carbonate rocks ${\to}$ the intrusion of Cretaceous granite ${\to}$ serpentinization ${\to}$ Fe mineralization by the interprelation of field occurrence and mineralogical characteristics.

Investigation on the Rock Resembling Materials for a Marble PAGODA (대리석 석탑 및 석탑과 유사재질에 대한 암석조사)

  • Kim, Sa-Dug;Lee, Sang-Hun
    • 보존과학연구
    • /
    • s.16
    • /
    • pp.123-128
    • /
    • 1995
  • For establishing the plan of scientific conservation on the Kyongch′onsa and site of Won-gaksa 10 floors pagodas, the investigation on the rocks consisting these pagodas has been made on the rock phase and weathering characteristics. The Kyongch′onsa pagoda consists of fine grained pale graylimestone containing abundant fossils of shell and fragments of organisms. The site of Won-gaksa pagoda is composed of marble of pale gray, white and/or light brown color, which is intercalated with thin mica schist. The marble, the recrystallized limestone, consists mainly of recrystallized calcite accompanied with minor amount of muscovite. Especially carbonate rocks are somewhat different in chemical weathering from such granitic rocks. The field survey and laboratory experiment using polarizing microscope had been done during 30 days from Feb, 13 to March, 31, 1995. The rocks equivalent to that of the site of Kyongch′onsa were identified from the Myobong limestone formation and taken samples around the road from P′yongch′ang to Mitan, P′yongch′ang-gun. The rocks similar to that of the site of Won-gaksa pagoda were distributed around Pan-un-ri, Chunch′on-myon, Yong-wol-gun. The rocks of the Silluksa pagoda consisting of white recrystallized limestone with banded structure are similar to the marble of the Hyangsan-riformation distributed around Suanbo, Ch′ungch′ongbuk-do.

  • PDF

Sulfide Mineralization in the Huronian Sediments in the Cobalt Area, Ontario, Canada (캐나다 온타리오주 코발트 지역의 휴로니안 퇴적암에 발달한 황화물 광화작용에 관한 연구)

  • Kim, Won-Sa
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.3 s.49
    • /
    • pp.139-151
    • /
    • 2006
  • Base metal sulfides occur in the Huronian sedimentary rocks that cover the Archean volcanic rocks in the Cobalt area, Ontario, Canada. They are mostly concentrated in the basal conglomerate which was formed in the pre-Huronian basin structure. Sulfide occurrence can be grouped as massive sulfide clasts in the basal and Coleman conglomerate, disseminated sulfides throughout the sediments, and disseminated sulfides near Ag-Co-Ni-As carbonate veins. Detrital mechanism can explain features such as angularity of sulfide fragments and graded bedding of dissemnated sulfides. Sulfides concentrated near carbonate veins are probably of hydrothermal origin. Nearby strata-bound type massive sulfide ore deposits and mineralized interflow units are the most probable sources for syngenetic sulfides. This is supported by the angularity of sulfide fragments, presence of massive sulfide boulders which are identical in mineralogy and texture to the strata-bound type sulfide deposits in the Archean basement, and a similar composition of sphalerite in the Archean volcanic rocks and Huronian sedimentary rocks. Some sulfide grains, especially in sandstones and argillites, were undergone recrystallization during the intrusion of the Nipissing diabase.

The Practical Use of the Productive Aquifer Systems as a Source of a Renewable Thermal Energy and Local Water Works (지방상수도의 신규 수원과 재생에너지원으로서 고산출성 대수층의 활용)

  • Hahn, Jeongsang
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.4
    • /
    • pp.16-25
    • /
    • 2018
  • The Quaternary volcanic rocks, clastic sedimentary rocks of Kyongsang System, and carbonate rocks of Joseon and Pyongan System are known as good productive and potential aquifer systems in South Korea. National Groundwater Informaton Mangement and Service System (GIMS) indicates that the exploitable, sustainable, and current use of groundwater are about 18.8, 12.9, and $3.73billion\;m^3/a$, respectively. The rest amount ($9.1billion\;m^3/a$) can still be used for an additional water supply source. Therefore. comprehensive groundwater survey work comprising hydrogeological mapping, subsurface investigation and quantitative aquifer test etc. are highly required to establish rational groundwater management strategy.

Geochemical Water Quality and Genesis of Carbonated Dalki Mineral Water in the Chungsong Area, Kungpook (경북청송지역 달기 탄산약수의 지화학적 수질특성과 생성기원)

  • 정찬호
    • Economic and Environmental Geology
    • /
    • v.32 no.5
    • /
    • pp.455-468
    • /
    • 1999
  • Carbonated mineral waters fo $Ca(Mg)-HCO_3$ type spring out fissure of Jurassic granite in the valley floor of the Chungsong area. The water has been long as a Dalki medicinal water because of its unique therapeutic effect against clacium deficit, stomach and skin troubles, ect. The water has a high $CO_2$ concentration ($P_{CO_2}$=0.51~1.12atm) and exhibits strong pH buffering (5.9~6.26) by $H_2CO_3/HCO_3$ couple. Electrical conductivity ranges from 1,900 to 3100 $\mu$S/cm. Environmental isotopic data $(^{2}H/^{1}H, ^{18}O/^{16}O \;and \;^3H)$ indicates that the water is of meteoric origin recharged in the Cretaceous sedimetary strata distributed in upper part of the catchment area at least before 1950s, The high $P_{co_2}$ and carbon isotope data (${\delta}^{13}C=-3\sim-0.2\textperthousand$) suggest that the potential source of carbonated mineral water was originated in deep-seated $CO_2$ as wel as aboundant carbonate minerals of sedimentary desimetary rocks. The major source minerals of the dissoved species in the carbonated mineral water appear to be carbonate minerals, albite and K-feld-spar in sedimentrary rocks.

  • PDF

Loci of Orebodies, the Bupyeong Silver Deposits (부평은광상(富平銀鑛床)의 광체배태장소(鑛體胚胎場所))

  • Suh, Kyu-Sik;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.20 no.2
    • /
    • pp.97-106
    • /
    • 1987
  • The geology of the Bupyeong mine area is consisted of Precambrian Gyeonggi gneiss complex and Mesozoic igneous rocks; i.e., pyroclastic rocks, intrusive breccia, granite and felsic porphyries which were formed during a Jurassic to early Cretaceous resurgent caldera evolution. Granites are not observed on the surface and in the underground of the mine. Bupyeong silver deposits occur as stockworks of base metal sulfides- minor silver minerals-quartz - carbonate veinlets, hosted by pyroclastic rocks and intrusive breccia at the southwestern margin of the caldera. Silver occurs mainly as native silver, and other silver minerals, minor in quantity, are argentite, tetrahedrite-freibergite, pyrargyrite, polybasite, canfieldite and dyscrasite. The average grade of silver ore is about 180g/t Ag. Discrimination of silver ore from the country rocks depends largely on the chemical analyses of rock samples taken every two meters from tunnels, diamond-drilling cores and mining stopes, because silver minerals are hardly observed in the ore by crude eye, and silver orebodies do not properly coincide with the concentrated zone of base metal sulfides which were precipitated at the earlier stage than the stage of precipitation of native silver. General characteristics of the loci of the silver orebodies are as follows; (1) The host rocks of orebodies are pyroclastic rocks and intrusive breccia. (2) Many of the orebodies are distributed around Gyeonggi gneiss complex. Especially where the paleotopography of gneiss complex shows a gradual slope, the basal stratigraphic horizon of the pyroclastic rocks unconformably overlying the gneiss complex offered a favorable loci of high grade ore. (3) $N5^{\circ}W$ to $N15^{\circ}$ E-striking faults played an important role in the localization of the orebodies. (4) Conduits of intrusive breccia within the gneiss complex, through which the intrusive breccia intruded into the upper pyroclastic rocks, exist beneath most of the main orebodies. This suggests that the conduits of intrusive breccia served as channelways for the migration of ore fluids.

  • PDF

New Occurrence of Haengmae Formation in Taebaeksan Basin (태백산분지 내 새로운 행매층 분포 확인)

  • Song, Yungoo;Park, Chaewon;Kim, Namsoo;Choi, Sung-Ja;Chwae, Ueechan;Kwon, Sanghoon;Jang, Yirang
    • Economic and Environmental Geology
    • /
    • v.54 no.3
    • /
    • pp.365-372
    • /
    • 2021
  • Pebble-bearing clastic carbonate rock which has been found in and around the Jeongseon and Okgye through the field survey was studied in petrological and mineralogical characteristics. We define the clastic carbonate rocks as 'Dolomite-pebble bearing fine sand-sized dolostone, or grainstone', which are characterized by the existence of dolomite single grains and Mg-phengite, and by the subsequent formation of secondary calcite cements. These attributes correspond well with those of the typical Haengmae Formation from Haengmae-dong, Mitan-myeon, Jeongseon-gun, thus the carbonate rocks in the Jeongseon and Okgye areas must belong to the Haengmae Formation. The result suggests that the Haengmae Formation is an independent unit among the Paleozoic lithostratigraphic units in Taebaek basin and lies in the upper part of Jeongseon and Sukbyungsan Formations under the Hongjeom Formation of Pyeongan Supergroup.

Stable isotope and rare earth element geochemistry of the Baluti carbonates (Upper Triassic), Northern Iraq

  • Tobia, Faraj Habeeb
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.975-987
    • /
    • 2018
  • Stable isotope ratios of $^{18}O/^{16}O$ and $^{13}C/^{12}C$ and rare earth elements geochemistry of the Upper Triassic carbonates from the Baluti Formation in Kurdistan Region of Northern Iraq were studied in two areas, Sararu and Sarki. The aim of the study is to quantify the possible diagenetic processes that postdated deposition and the paleoenvironment of the Baluti Formation. The replacement products of the skeletal grains by selective dissolution and neomorphism probably by meteoric water preserved the original marine isotopic signatures possibly due to the closed system. The petrographic study revealed the existence of foraminifers, echinoderms, gastropods, crinoids, nodosaria and ostracods as major framework constituents. The carbonates have micritic matrix with microsparite and sparry calcite filling the pores and voids. The range and average values for twelve carbonate rocks of ${\delta}^{18}O$ and ${\delta}^{13}C$ in Sararu section were -5.3‰ to -3.16‰ (-4.12‰) and -2.94‰ to -0.96‰ (-1.75‰), respectively; while the corresponding values for the Sarki section were -3.69‰ to -0.39‰ (-2.08‰) and -5.34‰ to -2.70‰ (-4.02‰), respectively. The bivariate plot of ${\delta}^{18}O$ and ${\delta}^{13}C$ suggests that most of these carbonates are warm-water skeletons and have meteoric cement. The average ${\Sigma}REE$ content and Eu-anomaly of the carbonates of Sararu sections were 44.26 ppm and 1.03, respectively, corresponding to 22.30 ppm and 0.93 for the Sarki section. The normalized patterns for the carbonate rocks exhibit: (1) non-seawater-like REE patterns, (2) positive Gd anomalies (average = 1.112 for Sararu and 1.114 for Sarki), (3) super chondritic Y/Ho ratio is 31.48 for Sararu and 31.73 for Sarki which are less than the value of seawater. The presence of sparry calcite cement, negative $^{13}C$ and $^{18}O$ isotope values, the positive Eu anomaly in the REE patterns (particularly for Sararu), eliminated Ce anomaly ($Ce/Ce^{\ast}$: 0.916-1.167, average = 0.994 and 0.950-1.010, average = 0.964, respectively), and Er/Nd values propose that these carbonates have undergone meteoric diagenesis. The REE patterns suggest that the terrigenous materials of the Baluti were derived from felsic to intermediate rocks.

The Okdong Fault (옥동단층(玉洞斷層))

  • Kim, Jeong Hwan;Koh, Hee Jae;Kee, Weon Seo
    • Economic and Environmental Geology
    • /
    • v.22 no.3
    • /
    • pp.285-291
    • /
    • 1989
  • The Okdong Fault is situated in Okdong-Hamchang area, the central part of Korea. The area consists of Precambrian gneisses and granitoids, Paleozoic clastic and carbonate rocks, and Mesozoic clastic rocks and igneous intrusives. The Okdong Fault is situated along contact boundary between the lowermost Cambrian Basal Quartzite and Precambrian basements. Mylonites occur as narrow zone which is extended over 100km and is restricted to within 10m-30m along the Okdong Fault. The main features of mylonites are quartz mylonite derived from Cambrian Basal Quartzite and mylonitic granitoids from Precambrian granitoids. Movement sense is deduced as a sinistral strike-slip movement with evidence of rotation of sheared porphyroclasts, rotation of fragments and S/C-bands. The mylonite zone has been reactivated as fault which reveals oblique-slip movement. The fault resurges as faults which reveals normal(to the NW) and reverse(to the SE) dip-slip movement. Normal faults are dominant in the northern and southern part and reverse or thrust faults are dominant in the central part of the Okdong Fault. The thrust movement can be correlated with the Daebo Orogeny of Jurassic Period. Granites and dyke rocks intruded into Paleozoic and Precambrian rocks during Cretaceous Period.

  • PDF