• 제목/요약/키워드: Carbon-nanotubes

검색결과 1,707건 처리시간 0.031초

기판 상에 합성한 탄소나노튜브의 성장에 미치는 촉매금속 입자의 분포와 기판온도의 영향 (Effects of the Distribution of Nickel-Nitrate and the Substrate Temperature on the Synthesis of Multi-Walled Carbon Nanotubes)

  • 이교우;정종수;황정호
    • 대한기계학회논문집B
    • /
    • 제28권2호
    • /
    • pp.215-222
    • /
    • 2004
  • Synthesis of multi-walled carbon nanotubes on a nickel-nitrate-deposited substrate using an ethylene fueled inverse diffusion flame was illustrated. The deposition of nickel-nitrate particles on substrates was used for the smaller-diameter nanotubes than those formed in our previous studies. Also the effect of temperature variations on the size of formed nanotubes was investigated. The diameters of formed multi-walled carbon nanotubes were ranging from 15 to 100 nm in the several radial locations. In case of using a nickel-nitrate-deposited substrate, the smaller-diameter carbon nanotubes were synthesized than those in case of using the substrate with melted nickel-nitrate. In the formation region of carbon nanotubes, the diameter of formed nanotubes was tend to be decrease as the radial distance form the flame center was increased, that is the decreased substrate temperature.

탄소나노튜브의 휴믹산 흡착특성에 관한 기초연구 (Investigation on the Adsorption Features of Humic Acid on Carbon Nanotubes)

  • 이선화;김동수
    • 한국물환경학회지
    • /
    • 제20권5호
    • /
    • pp.520-524
    • /
    • 2004
  • As a feasibility study for the application of carbon nanotubes to the treatment of environmental pollutants, the adsorption characteristics of humic acid on carbon nanotubes has been investigated. The dispersion features of carbon nanotubes in aquatic environment were investigated by measuring the variation of their electrokinetic potentials with pH, and the effects of some dispersants on their dispersion features were also examined. Under the experimental conditions, humic acid was observed to mostly adsorb on nanotubes within a few minutes and reach the equilibrium state within about one hour. The adsorption features of humic acid on nanotubes were found to follow the Freundlich model better than the Langmuir Model. Humic acid adsorbed on carbon nanotubes endothermically and the change of enthalpy in adsorption reaction was estimated to be ca. 18.37kJ/mol at standard state. The entropic change in adsorption reaction for humic acid was ca. 0.0503kJ/mol at standard state and the activation energy for adsorption was also estimated based on the change of rate constants with temperature. FT-IR investigations showed that the functional groups such as alcohol, ester, and aromatics existing in the chemical structure of humic acid might work as the bridge in its adsorption on nanotubes.

화염합성 시의 탄소나노튜브와 나노섬유의 생성 및 성장 메커니즘 (Formation and Growth Mechanisms of Flame-Synthesized Carbon Nanotubes and Nanofibers)

  • 이교우;정종수;강경태;황정호
    • 한국연소학회지
    • /
    • 제9권1호
    • /
    • pp.18-24
    • /
    • 2004
  • Synthesis of carbon nanomaterials on a metal substrate by an ethylene fueled inverse diffusion flame was illustrated. Two stainless steel plates coated with $Ni(NO_3){_2}$ were folded with each other and used as a catalytic metal substrate. Carbon nanotubes and nanofibers with diameters of 20 - 60nm were found on the substrate. From the TEM-EDS analyses, most of the nanomaterials turned out to be Nicatalyzed. Carbon nanotubes were formed on the substrate in the region ranging from about 1,400K to 900K. The formation mechanisms of nanotubes and nanofibers were similar. The synthesis temperature of the nanofibers was lower than that of the nanotubes. The higher synthesis temperature of nanotubes might enhance the activity of the catalyst metal and produce more condensed carbons. The accumulated graphite layers led to form compartments to release the compressive stress in the layers. The growth of carbon nanotubes was bamboo-shaped showing compartments in the inside hollow. The distances between those compartments represented the growth rate that depended on the synthesis temperature.

  • PDF

역확산화염과 촉매금속 기판을 이용한 탄소 나노튜브와 나노섬유의 연소합성 (Synthesis of Carbon Nanotubes and Nanofibers on a Catalytic Metal Substrate by an Inverse Diffusion Flame)

  • 이교우;정종수;황정호
    • 한국연소학회지
    • /
    • 제7권4호
    • /
    • pp.21-28
    • /
    • 2002
  • Synthesis of carbon nanotubes and nanofibers on a metal substrate by an ethylene fueled inverse diffusion flame was illustrated. Stainless steel plates were used for the catalytic metal substrate. Multi-walled carbon nanotubes and nanofibers with a diameter range of 30-80nm were found on the substrate. The temperature of the substrate played an important role in the formation of carbon nanotubes and nanofibers. The pathway to the nanotubes and nanofibers could be determined by the temperature history of the substrate.

  • PDF

탄소나노튜브의 중저온에서의 화학적 합성 (Synthesis of Carbon Nanotubes by Chemical Method at Warm Temperatures)

  • 안중호;이상현;김용진;정형식
    • 한국분말재료학회지
    • /
    • 제13권5호
    • /
    • pp.305-312
    • /
    • 2006
  • Amorphous carbon nanotubes were synthesized by a reaction of benzene, ferrocene and Na mixture in a small autoclave at temperatures as low as $400^{\circ}C$. The resulting carbon nanotubes were short and straight, but their inner hole was filled with residual products. The addition of quartz to the reacting mixture considerably promoted the formation of carbon nanotubes. A careful examination of powder structure suggested that the nanotubes in this process were mainly formed by surface diffusion of carbon atoms at the surface of solid catalytic particles, not by VLS(vapor-liquid-solid) mechanism.

패터닝된 Ni 촉매 금속 위에서의 탄소나노튜브 성장 (Selective growth of carbon notubes by patterning nickel catalyst metal)

  • 방윤영;장원석;한창수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.473-474
    • /
    • 2006
  • Aligned carbon nanotubes(CNTs) array were synthesized using direct current plasma-enhanced chemical vapor deposition. The nickel microgrids catalyzed the growth of carbon nanotubes which take on the area of the nickel microgrids. Selective growth of areas of nanotubes was achieved by patterning the nickel film. CNTs were grown on the pretreated substrates at 30% $C_2H_2:NH_3$ flow ratios for 10min. Carbon nanotubes with diameters about 20 nanometers and lengths approximately 720 nanometers were obtained. Morphologies of carbon nanotubes were observed by FE-SEM and TEM.

  • PDF

다중 탄성 빔 모델을 사용한 다중벽 탄소 나노튜브의 자유 진동에 미치는 수정된 반데르발스 상호작용에 대한 연구 (The Study of Modified van der Waals Interactions on Free Vibration of Multi-walled Carbon Nanotubes Using Multi-elastic Beam Model)

  • 윤주일;강상욱
    • 한국소음진동공학회논문집
    • /
    • 제20권4호
    • /
    • pp.390-396
    • /
    • 2010
  • Resonant frequencies and the associated vibrational modes of multiwall carbon nanotubes are studied in this paper. The analysis is based on a multiple-elastic beam model, considering intertube radial displacements and the related internal degrees of freedom. Especially, van der Waals interaction is modified considering both all interaction between each layers in multi-wall carbon nanotubes and curvature effect. The results show that modified van der Waals interaction could significantly affect the natural frequencies of multi-walled carbon nanotubes. In particular, non-coaxial intertube resonance will be excited at the higher resonant frequencies of multiwall carbon nanotubes.

Carbon Nanotube Deposition using Helicon Plasma CVD at Low Temperature

  • Muroyama, Masakazu;Kazuto, Kimura;Yagi, Takao;Inoue, Kouji;Saito, Ichiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.201-202
    • /
    • 2003
  • We developed a novel growth method of aligned carbon nanotubes. Aligned carbon nanotubes are grown on a metal catalyst on a glass substrate using biased Helicon plasma chemical vapor deposition (HPECVD) of $CH_4/H_2$ gases from 400 C to 500 C. The Helicon plasma source is one of the high-density plasma sources and is promising for low temperature carbon deposition. A Ni film was used as a catalyst to reduce the activation energy of the nanotubes' growth. The carbon nanotubes were deposited on the nickel catalysis layer selectively.

  • PDF

The Efficient Production on single- and Multi- Wall Carbon Nanotubes

  • Shinohara, H.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.207-207
    • /
    • 2000
  • Multi- and single-wall carbon nanotubes are promising new carbon materials in nano-electronics, field-emitters, CRT-displays, hydrogen storage materials, biomedical tracers and so forth. The present talk will deal with a high-yield synthesis on quasi-aligned multi-wall carbon nanotubes via a chemical vapor deposition technique. I will also talk about a possible growth mechanism on single-wall carbon nanotubes based on newly obtained experimental results.

  • PDF

Co-Ni 합금위에서 수직방향으로 정렬된 탄소나노튜브의 성장 (Growth of vertically aligned carbon nanotubes on Co-Ni alloy metal)

  • 이철진;김대운;이태재;박정훈;손권희;류승철;송홍기;최영철;이영희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 D
    • /
    • pp.1504-1507
    • /
    • 1999
  • We have grown vertically aligned carbon nanotubes in a large area of Co-Ni codeposited Si substrates by the thermal CVD using $C_2H_2$ gas. Since the discovery of carbon nanotubes, Synthesis of carbon nanotubes for mass production has been achieved by several methods such as laser vaporization arc discharge, and pyrolysis. In particular, growth of vertically aligned nanotubes is of technological importance for applications to FED. Recently, vertically aligned carbon nanotubes have been grown on glass by PECVD Aligned carbon nanotubes can be also grown on mesoporous silica and Fe patterned porous silicon using CVD. Despite such breakthroughs in the growth, the growth mechanism of the alignment are still far from being clearly understood. Furthermore, FED has not been clearly demonstrated yet at a practical level. Here, we demonstrate that carbon nanotubes can be vertically aligned on catalyzed Si substrate when the domain density reaches a certain value. We suggest that steric hindrance between nanotubes at an initial stage of the growth forces nanotubes to align vertically and then nanotubes are further grown by the cap growth mechanism.

  • PDF