• Title/Summary/Keyword: Carbon-fiber

Search Result 2,788, Processing Time 0.03 seconds

Electrochemical Characteristics of Supercapacitor Based on Amorphous Ruthenium Oxide In Aqueous Acidic Medium (비정질 루테늄 산화물을 사용한 수계 Supercapacitor의 전기화학적 특성)

  • Choi, Sang-Jin;Doh, Chil-Hoon;Moon, Seong-In;Yun, Mun-Su;Yug, Gyeong-Chang;Kim, Sang-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.1
    • /
    • pp.21-26
    • /
    • 2002
  • A supercapacitor was developed using an amorphous ruthenium oxide material. The electrode of supercapacitor was prepared using an amorphous ruthenium oxide, which was synthesized from ruthenium trichloide hydrate$(RuCl_3{\cdo5}xH_2O)$. Thin film of tantalum was used as a current collector because it had wide. potential window characteristics than titanium and 575304 materials. A supercapacitor was assembled with ruthenium oxide as an electrode active material and 4.8M sulfuric acid solution as an electrolyte. The specific capacitance of the electrode was tested by a cyclic voltammetry using a half cell. The maximum differential specific capacitances during the oxidative and the reductive scans were 710 and $645\;F/g-RuO_2{\cdot}nH_2O$, respectively. The average specific capacitance was $521\;F/g-RuO_2{\cdot}nH_2O$. The assembled supercapacitor was protonated to the potential level of 0.5V vs. SCE. Super-capacitor, which was adjusted to the appropriate protonation level, had the specific capacitance of $151\;F/g-RuO_2{\cdot}nH_2O$ based on the concept of full cell.

Effect of Adhesive Shear Strength of CFRP/Ni-Cr Alloy Under Severe Environmental Condition (가혹 환경이 복합재/Ni-Cr 합금 접착전단강도에 미치는 영향 연구)

  • Cho, Hyeon-Tae;Park, Seong-Min;Kim, Min-Jun;Hoang, Van-Tho;Kim, Hak-Inn;Son, Myung-Sook;Ahn, Jong-Kee;An, Ji-Min;Choi, Jin-Ho;Nam, Young-Woo;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.275-281
    • /
    • 2020
  • The mechanical property related to lap shear strength of the joint structure between carbon fiber reinforced polymer (CFRP) composite and metal (Ni-Cr Alloy) under varying environmental conditions (temperature and humidity) was studied in order to apply to the aircraft fan blade. Room temperature dry (RTD), elevated temperature wet (ETW), and cold temperature dry (CTD) environmental conditions were chosen for investigation based on the flight conditions of aircraft. Lap shear strength tests were conducted according to ASTM Standard D3528 to evaluate the shear strength. The microstructure characteristic of failure zone was analyzed by SEM images to check the adhesive shear strength with the three environmental conditions. In comparison with shear strength for the RTD condition, the shear strength in the ETW condition was reduced by 72.8% while those for the CTD condition increased by 56.5%. The moisture absorption and high temperature in ETW condition strongly had an affect on mechanical property of adhesive, while cold temperature could enhance the adhesive shear strength due to the higher brittleness.

Ground Test & Evaluation of Conformal Load-bearing Antenna Structure for Communication and Navigation (통신 항법용 다중대역 안테나 내장 스킨구조의 지상시험평가)

  • Kim, Min-Sung;Park, Chan-Yik;Cho, Chang-Min;Jun, Seung-Moon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.11
    • /
    • pp.891-899
    • /
    • 2013
  • This paper suggests a test and evaluation procedure of conformal load-bearing antenna structure(CLAS) for high speed military jet application. A log periodic patch type antenna was designed for multi-band communication and navigation antenna. Carbon/Glass fiber reinforced polymer was used as a structure supporting aerodynamic loads and honeycomb layer was used to improve antenna performance. Multi-layers were stacked and cured in a hot temperature oven. Gain, VSWR and polarization pattern of CLAS were measured using anechoic chamber within 0.15~2.0 GHz frequency range. Tension, shear, fatigue and impact load test were performed to evaluate structural strength of CLAS. Antenna performance test after every structural strength test was conducted to check the effect of structural test to antenna performance. After the application of new test and evaluation procedure to validate a new CLAS, a design improvement was found.

Acquisition and Verification of Dynamic Compression Properties for SHPB of Woven Type CFRP (Woven Type CFRP의 SHPB에 대한 동적 압축 물성 획득 및 검증)

  • Park, Ki-hwan;Kim, Yeon-bok;Kim, Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.363-372
    • /
    • 2020
  • Dynamic compressive material properties at high strain rates is essential for improving the reliability of finite element analysis in dynamic environments, such as high-speed collisions and high-speed forming. In general, the dynamic compressive material properties for high strain rates can be obtained through SHPB equipment. In this study, SHPB equipment was used to acquire the dynamic compressive material properties to cope with the collision analysis of Woven tpye CFRP material, which is being recently applied to unmanned aerial vehicles. It is also used as a pulse shaper to secure a constant strain rate for materials with elastic-brittle properties and to improve the reliability of experimental data. In the case of CFRP material, since the anisotropic material has different mechanical properties for each direction, experiments were carried out by fabricating thickness and in-plane specimens. As a result of the SHPB test, in-plane specimens had difficulty in securing data reproducibility and reliability due to fracture of the specimens before reaching a constant strain rate region, whereas in the thickness specimens, the stress consistency of the specimens was excellent. The data reliability is high and a constant strain rate range can be obtained. Through finite element analysis using LS-dyna, it was confirmed that the data measured from the pressure rod were excessively predicted by the deformation of the specimen and the pressure rod.

Study of Oil Palm Biomass Resources (Part 3) - Torrefaction of Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 III - 오일팜 바이오매스의 반탄화 연구 -)

  • Cho, Hu-Seung;Sung, Yong Joo;Kim, Chul-Hwan;Lee, Gyeong-Seon;Yim, Su-Jin;Nam, Hyeo-Gyeong;Lee, Ji-Young;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.1
    • /
    • pp.18-28
    • /
    • 2014
  • Renewable Portfolio Standards(RPS) is a regulation that requires a renewable energy generated from eco-friendly energy sources such as biomass, wind, solar, and geothermal. The RPS mechanism generally is an obligatory policy that places on electricity supply companies to produce a designated fraction of their electricity from renewable energies. The domestic companies to supply electricity largely rely on wood pellets in order to implement the RPS in spite of undesirable situation of lack of wood resources in Korea. This means that the electricity supply companies in Korea must explore new biomass as an alternative to wood. Palm kernel shell (PKS) and empty fruit bunch (EFB) as oil palm wastes can be used as raw materials used for making pellets after their thermochemical treatment like torrefaction. Torrefaction is a pretreatment process which serves to improve the properties including heating value and energy densification of these oil palm wastes through a mild pyrolysis at temperature typically ranging between 200 and $300^{\circ}C$ in the absence of oxygen under atmospheric pressure. Torrefaction of oil palms wastes at above $200^{\circ}C$ contributed to the increase of fixed carbon with the decrease of volatile matters, leading to the improvement of their calorific values over 20.9 MJ/kg (=5,000 kcal/kg) up to 25.1 MJ/kg (=6,000 kcal/kg). In particular, EFB sensitively responded to torrefaction because of its physical properties like fiber bundles, compared to PKS and hardwood chips. In conclusion, torrefaction treatment of PKS and EFB can greatly contribute to the implement of RPS of the electricity supply companies in Korea through the increased co-firing biomass with coal.

IN-LINE NIR SPECTROSCOPY AS A TOOL FOR THE CONTROL OF FERMENTATION PROCESSES IN THE FERMENTED MEATS INDUSTRY

  • Tamburini, Elena;Vaccari, Giuseppe;Tosi, Simona;Trilli, Antonio
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3104-3104
    • /
    • 2001
  • The research described here was undertaken with the aim of monitoring, optimizing and ultimately controlling the production of heterofermentative microbes used as starters in the salami industry. The use of starter cultures in the fermented meats industry is a well-established technique used to shorten and standardize the ripening process, and to improve and control the organoleptic quality of the final product. Starter cultures are obtained by the submerged cultivation of suitable microorganisms in stirred, and sometimes aerated, fermenters where monitoring of key physiological parameters such as the concentration of biomass, substrates and metabolites suffers from the general lack of real-time measurement techniques applicable to aseptic processes. In this respect, the results of the present work are relevant to all submerged fermentation processes. Previous work on the application of on-line NIR spectroscopy to the lactic acid fermentation (Dosi et al. - Monreal NIR1995) had successfully used a system based on a measuring cell included in a circulation loop external to the fermenter. The fluid handling and sterility problems inherent in an external circulation system prompted us to explore the use of an in-line system where the NIR probe is immersed in the culture and is thus exposed to the hydrodynamic conditions of the stirred and aerated fluid. Aeration was expected to be a potential source of problems in view of the possible interference of air bubbles with the measurement device. The experimental set-up was based on an in-situ sterilizable NIR probe connected to the instrument by means of an optical fiber bundle. Preliminary work was carried out to identify and control potential interferences with the measurement, in particular the varying hydrodynamic conditions prevailing at the probe tip. We were successful in defining the operating conditions of the fermenter and the geometrical parameters of the probe (flow path, positioning, etc.) were the NIR readings were reliable and reproducible. The system thus defined was then used to construct and validate calibration curves for tile concentration of biomass, carbon source and major metabolites of two different microorganisms used as salami starters. Real-time measurement of such parameters coupled with the direct interfacing of the NIR instrument with the PC-based measurement and control system of the fermenter enabled the development of automated strategies for the interactive optimization of the starter production process.

  • PDF

Studies on the Production of Mycelium by Lyophyllum decastes in Submerged Culture (Lyophyllum decastes의 심부배양(深府培養)에 의한 균체(菌體) 생산(生産)에 관한 연구(硏究))

  • Hong, Jae-Sik;Lee, Ji-Yul;Kim, Myeong-Sook;Kim, Dong-Han
    • The Korean Journal of Mycology
    • /
    • v.14 no.2
    • /
    • pp.131-139
    • /
    • 1986
  • Cultural and nutritional conditions for Lyophyllum decastes and its chemical composition in a synthetic medium were investigated. The optimal temperature and pH for the production of mycelium were $25^{\circ}C$ and pH 7.5. The mycelium yield was the highest on 15th day. Among the carbon sources, glucose and CMC were the best for the production of mycelium and their optimal concentrations were 3 and 6%, respectively. As an organic nitrogen, proteose peptone was the best and $(NH_4)_2HPO_4$ as an inorganic nitrogen was good. The optimal concentration of proteose peptone and $(NH_4)_2HPO_4$ were 2 and 0.2%, respectively. The optimal ratio of glucose to proteose peptone for production of mycelium was 10 : 1. Also, the optimal concentrations of $K_2HPO_4$ and $MgSO_4$ were 0.2 and 0.06%, respectively and that of $CaCl_2$ was 0.1%. Among the bioextracts, yeast extract was the most effective and its optimal concentration was 1.5%. In chemical components of the mycelium of Lyophyllum decastes, total sugar, crude protein and crude fat were 34.80, 28.35 and 2.50%, respectively. Its ash was 7.57% and crude fiber 11.99%.

  • PDF

Design of Mach-Scale Blade for LCH Main Rotor Wind Tunnel Test (소형민수헬기 주로터 풍동시험을 위한 마하 스케일 블레이드 설계)

  • Kee, YoungJung;Park, JoongYong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.159-166
    • /
    • 2018
  • In this study, the internal structural design, dynamic characteristics and load analyses of the small scaled rotor blade required for LCH(Light Civil Helicopter) main rotor wind tunnel test were carried out. The test is performed to evaluate the aerodynamic performance and noise characteristics of the LCH main rotor system. Therefore, the Mach-scale technique was appled to design the small scaled blade to simulate the equivalent aerodynamic characteristics as the full scale rotor system. It is necessary to increase the rotor speed to maintain the same blade tip speed as the full scale blade. In addition, the blade weight, section stiffness, and natural frequency were scaled according to the Mach-type scaling factor(${\lambda}$). For the design of skin, spar, torsion box, which are the main components of the blade, carbon and glass fiber composite materials were adopted, and composite materials are prepreg types that can be supplied domestically. The KSec2D program was used to evaluate the section stiffness of the blade. Also, structural loads and dynamic characteristics of the Mach scale blade were investigated through the comprehensive rotorcraft analysis program CAMRADII.

Chemical compositions of fermented Polygonum multiflorum Thunberg. root by Lentinula edodes (Berk.) Pegler mycelials cultivation (표고균사체 발효하수오 배양적 특성 및 이화학적 성분)

  • Oh, Junseok;Hong, Jae-Heoi;Park, Tae-Young;Kim, Kyung-Je;Jin, Seong-Woo;Ban, Seung-Eon;Koh, Young-Woo;Jeong, Sang-Wook;Im, Seung-Bin;Seo, Kyoung-Sun
    • Journal of Mushroom
    • /
    • v.14 no.4
    • /
    • pp.184-190
    • /
    • 2016
  • This study was performed to determine the optimal condition for Lentinula edodes JMI-10079 mycelium cultivation on the root of Polygonum multiflorum. We also analyzed the proximate composition, total amino acids, and minerals in the root of P. multiflorum cultivated with L. edodes JMI-10079 mycelia. The optimal temperature and pH for L. edodes JMI-10079 mycelium cultivation on the P. multiflorum root were $25^{\circ}C$ and pH 5-6 respectively, whereas the optimal carbon and nitrogen sources were glucose and maltose, respectively. The content of crude protein, crude fat, and ash in the P. multiflorum root cultivated with L. edodes JMI-10079 mycelia was higher than that in the uncultivated P. multiflorum root. The content of crude fiber was the highest in the control. Total amino acid analysis revealed that the contents of total amino acids and total essential amino acids were increased by higher root of P. multiflorum concentration.

A Basic Study on the Design of the Flexible Keel in the Energy-Storage Prosthetic Foot for the Improvement of the Walking Performance of the Below Knee Amputees (하지 절단환자의 보행 능력 향상을 위한 에너지 저장형 의족의 유연 용골 설계를 위한 기초연구)

  • 장태성;이정주;윤용산;임정옥
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.519-530
    • /
    • 1998
  • In this paper, the basic study on the design of the flexible keel of the energy-storage prosthetic foot was performed in order to Improve the walking performance and Increase the activities of the below knee amputees. Based on the analysis of the anthropometric data and the normal gait on two dimensional sagittal plane available In the literature, we presented a model of the basic structure of the flexible keel of the prosthetic foot. The model of the basic structure was composed of the simple beams, and linear rotational spring and damper. Laminated carbon fiber-reinforced composites were selected as the material of the basic structure model of the flexible keel In order to apply the high strength and light weight materials to the basic structure of the flexible keel of the prosthetic foot. The recoverable strain energy In response to the change of beam shape was calculated bur the finite element analysis and it was suggested that the change of beam shape could be the design variable in flexible keel design. The simulation process was systematically designed by using orthogonal array table in order to design the flexible keel structure which could store the more recoverable strain energy. finite element analysis was carried but according to the design of simulations by using the finite element program ABAQUS and the flexible keel structure of the energy-storage prosthetic foot was obtained from the analysis of variance(ANOVA). The dynamic simulation model of the prosthetic walking using the flexible keel structure was made and the dynamic analysis was carried but during one walk cycle. Based on the above results, an effective design process was presented for the development of the prosthetic fool system.

  • PDF