• Title/Summary/Keyword: Carbon-based catalysts

Search Result 115, Processing Time 0.036 seconds

Comparison of stabilities in carbon nanotubes grown on a submicron-sized tip in terms of various buffer and catalyst materials (미세크기 팁 위에 성장된 탄소 나노튜브의 완충막 및 촉매 금속에 따른 안정성 비교)

  • Kim, Jong-Pil;Kim, Young-Kwang;Park, Chang-Kyun;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1224-1225
    • /
    • 2008
  • The results of the experiment that was conducted on the electron emission property and the long-term stability of the emission current in various carbon nanotubes (CNTs)-based field emitters with a CNT/catalyst/buffer/W-tip configuration are presented herein. CNT-based field emitters were fabricated by varying the (TiN, Al/Ni/TiN) buffer layer and the (Ni, Co) catalyst material. This study aimed to elucidate how the buffer layers and catalyst materials affect the structural properties of CNTs and the long-term stability of CNT emitters. Raman spectroscopy, field emission SEM, and high-resolution TEM were used to analyze the crystalline structure, surface morphologies, and nanostructures of all the grown CNTs. X-ray photoelectron spectroscopy (XPS) was used to monitor the chemical bonds of all the buffer layers and catalysts. Electron emission measurement and a long-term (up to 40h) stability test were carried out using a compactly designed field emission measurement system.

  • PDF

A Review on Membranes and Catalysts for Anion Exchange Membrane Water Electrolysis Single Cells

  • Cho, Min Kyung;Lim, Ahyoun;Lee, So Young;Kim, Hyoung-Juhn;Yoo, Sung Jong;Sung, Yung-Eun;Park, Hyun S.;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.183-196
    • /
    • 2017
  • The research efforts directed at advancing water electrolysis technology continue to intensify together with the increasing interest in hydrogen as an alternative source of energy to fossil fuels. Among the various water electrolysis systems reported to date, systems employing a solid polymer electrolyte membrane are known to display both improved safety and efficiency as a result of enhanced separation of products: hydrogen and oxygen. Conducting water electrolysis in an alkaline medium lowers the system cost by allowing non-platinum group metals to be used as catalysts for the complex multi-electron transfer reactions involved in water electrolysis, namely the hydrogen and oxygen evolution reactions (HER and OER, respectively). We briefly review the anion exchange membranes (AEMs) and electrocatalysts developed and applied thus far in alkaline AEM water electrolysis (AEMWE) devices. Testing the developed components in AEMWE cells is a key step in maximizing the device performance since cell performance depends strongly on the structure of the electrodes containing the HER and OER catalysts and the polymer membrane under specific cell operating conditions. In this review, we discuss the properties of reported AEMs that have been used to fabricate membrane-electrode assemblies for AEMWE cells, including membranes based on polysulfone, poly(2,6-dimethyl-p-phylene) oxide, polybenzimidazole, and inorganic composite materials. The activities and stabilities of tertiary metal oxides, metal carbon composites, and ultra-low Pt-loading electrodes toward OER and HER in AEMWE cells are also described.

A Study on Oxygen Reduction Reaction of PtM Electrocatalysts Synthesized on Graphene for Proton Exchange Membrane Fuel Cell (고분자전해질연료전지를 위한 그래핀 기반 PtM 촉매들의 산소환원반응성 연구)

  • Yang, Jongwon;Choi, Changkun;Joh, Han-Ik;Park, Jong Jin;Kwon, Yongchai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.4
    • /
    • pp.378-385
    • /
    • 2014
  • In this research, we investigate electrical performance and electrochemical properties of graphene supported Pt (Pt/G) and PtM (M = Ni and Y) alloy catalysts (PtM/Gs) that are synthesized by modified polyol method. With the PtM/Gs that are adopted for oxygen reduction reaction (ORR) as cathode of proton exchange membrane fuel cells (PEMFCs), their catalytic activity and ORR performance and electrical performance are estimated and compared with one another. Their particle size, particle distribution and electrochemically active surface (EAS) area are measured by TEM and cyclic voltammetry (CV), respectively. On the other hand, regarding ORR activity and electrical performance of the catalysts, (i) linear sweeping voltammetry by rotating disk electrode and rotating ring-disk electrode and (ii) PEMFC single cell tests are used. The TEM and CV measurements demonstrate particle size and EAS of PtM/Gs are compatible with those of Pt/G. In case of PtNi/G, its half-wave potential, kinetic current density, transferred electron number per oxygen molecule and $H_2O_2$ production % are excellent. Based on data obtained by half-cell test, when PEMFC singlecell tests are carried out, current density measured at 0.6V and maximum power density of the PEMFC single cell employing PtNi/G are better than those employing Pt/G. Conclusively, PtNi/Gs synthesized by modified polyol shows better ORR catalytic activity and PEMFC performance than other catalysts.

Can Artificial Intelligence Boost Developing Electrocatalysts for Efficient Water Splitting to Produce Green Hydrogen?

  • Jaehyun Kim;Ho Won Jang
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.175-188
    • /
    • 2023
  • Water electrolysis holds great potential as a method for producing renewable hydrogen fuel at large-scale, and to replace the fossil fuels responsible for greenhouse gases emissions and global climate change. To reduce the cost of hydrogen and make it competitive against fossil fuels, the efficiency of green hydrogen production should be maximized. This requires superior electrocatalysts to reduce the reaction energy barriers. The development of catalytic materials has mostly relied on empirical, trial-and-error methods because of the complicated, multidimensional, and dynamic nature of catalysis, requiring significant time and effort to find optimized multicomponent catalysts under a variety of reaction conditions. The ultimate goal for all researchers in the materials science and engineering field is the rational and efficient design of materials with desired performance. Discovering and understanding new catalysts with desired properties is at the heart of materials science research. This process can benefit from machine learning (ML), given the complex nature of catalytic reactions and vast range of candidate materials. This review summarizes recent achievements in catalysts discovery for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The basic concepts of ML algorithms and practical guides for materials scientists are also demonstrated. The challenges and strategies of applying ML are discussed, which should be collaboratively addressed by materials scientists and ML communities. The ultimate integration of ML in catalyst development is expected to accelerate the design, discovery, optimization, and interpretation of superior electrocatalysts, to realize a carbon-free ecosystem based on green hydrogen.

Research Trend on Precious Metal-Based Catalysts for the Anode in Polymer Electrolyte Membrane Water Splitting (고분자 전해질막 수전해의 산화 전극용 귀금속 촉매의 연구 동향)

  • Bu, Jong Chan;Jung, Won Suk;Lim, Da Bin;Shim, Yu-Jin;Cho, Hyun-Seok
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.4
    • /
    • pp.154-161
    • /
    • 2022
  • The carbon-neutrality induced by the global warming is important for the modern society. Hydrogen has been received the attention as a new energy source to replace the fossil fuels. Polymer electrolyte membrane fuel cells, which convert the chemical reaction energy of hydrogen into electric power directly, are a type of eco-friendly power for future vehicles. Due to the sluggish oxygen reduction reaction and costly Pt catalyst in the cathode, the research related to the replacement of Pt-based catalysts has been vitally carried out. In this case, however, the performance is significantly different from each other and a variety of factors have existed. In this review paper, we rearrange and summarize relevant papers published within 5 years approximately. The selection of precursors, synthesis method, and co-catalyst are represented as a core factor, while the necessity of research for the further enhancement of activity may be raised. It can be anticipated to contribute to the replacement of precious metal catalysts in the various fields of study. The final objective of the future research is depicted in detail.

A Study on the Control of Microstructures of Polyalphaolefins via Cationic Polymerization (양이온 중합을 이용한 폴리알파올레핀의 미세구조 조절에 관한 연구)

  • Ko, Young Soo;Kwon, Wan-Seop;No, Myoung-Han;Yim, Jin-Heong
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.346-352
    • /
    • 2015
  • Polyalphaolefin (PAO) is a synthetic lubricant that is superior to mineral-based lubricants in the terms of physical and chemical characteristics such as low pour point, high viscosity index (VI), and thermal and oxidation stability. Several kinds of PAOs have been synthesized by using 1-pentene, 1-hexene, 1-octene, or 1-dodecene as monomer with three kinds of aluminum-based Lewis acid catalysts via cationic polymerization. The control of the catalytic performance and physical properties of PAO such like molecular weight, kinematic viscosity, pour point, and viscosity index was done by changing polymerization parameters. The alkyl aluminum halide-based catalysts show better catalytic activity than that of the conventional $AlCl_3$ catalyst. The microstructure of PAO was investigated by means of TOF-MS (time of flightmass spectroscopy) analysis in order to elucidate the correlation between the performances of the lubricant (VI, pour point) and the molecular structure of PAO. The VI of PAO increases with increases in the carbon number of ${\alpha}$-olefin. In other words, the performances of PAO as a lubricant strongly depended on the branch length of PAO.

Structural properties of carbon nanotubes: The effect of substrate-biasing (기판 바이어스에 따른 탄소 나노튜브의 구조적 물성)

  • Park, Chang-Kyun;Yun, Sung-Jun;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.36-37
    • /
    • 2006
  • Both negative and positive substrate bias effects on the structural properties and field-emission characteristics are investigated. carbon nanotubes (CNTs) are grown on Ni catalysts employing an inductively-coupled plasma chemical vapor deposition (ICP-CVD) method. Characterization using various techniques, such as field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Auger spectroscopy (AES), and Raman spectroscopy, shows that the physical dimension as well as the crystal quality of CNTs grown can be changed and controlled by the application of substrate bias during CNT growth. It is for the first time observed that the prevailing growth mechanism of CNTs, which is either due to tip-driven growth or based-on-catalyst growth, may be influenced by substrate biasing. It is also seen that negative biasing would be more effectively role in the vertical-alignment of CNTs compared to positive biasing. However, the CNTs grown under the positively bias condition display much better electron emission capabilities than those grown under negative bias or without bias. The reasons for all the measured data regarding the structural properties of CNTs are discussed to confirm the correlation with the observed field-emissive properties.

  • PDF

Effects of TiN bufer on field emission properties of conical-type tungsten tips with carbon nanotubes coated (원뿔형 CNT-W 팁의 TiN 완충막 유무에 따른 전계방출 특성)

  • Kim, Young-Kwang;Yun, Sung-Jun;Kim, Won;Kim, Jong-Pil;Park, Chang-Kyun;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1271-1272
    • /
    • 2007
  • Experimental results regarding to the structural properties of carbon nanotubes (CNTs) and the field-emission characteristics of CNT-coated tungsten (W) tips are presented. CNTs are successfully grown on conical-type W-tips by inductively coupled plasma-chemical vapor deposition (ICP-CVD) with or without inserting a TiN-buffer layer prior to the formation of Ni catalysts. For all the CNTs grown, their nanostructures, morphologies, and crystalline structures are analyzed by FESEM, HRTEM, and Raman spectroscopy. Furthermore, the emission properties of CNT-based field-emitters are characterized to estimate the maximum current density and the threshold voltage. The results obtained in this study indicate that the emission current level of the CNT-emitter without using a TiN buffer is desirable for the application of micro-focused x-ray systems.

  • PDF

Application of Polycarbonate Diol Prepared with Carbon Dioxide in the Field of Waterborne Polyurethane (이산화탄소를 이용하여 제조된 폴리카보네이트 디올의 수분산 폴리우레탄에 응용)

  • Lim, Jae-Woo;Oh, Hyoung-Jin;Kim, Young-Jo;Jeong, Kwang-Eun;Yim, Jin-Heong;Ko, Young-Soo
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.507-510
    • /
    • 2010
  • Poly(cyclohexane carbonate) diol was synthesized by the alternating copolymerization of cyclohexene oxide and $CO_2$ over Cr based transition metal catalysts. The prepared PCCD was applied as a precursor for the preparation of waterborne polyurethane (PUD) in order to investigate an application field of carbon dioxide-based polycarbonate. The scratch resistance and thermal properties of PUDs, which was prepared with two kinds of polymeric diols (PCD and PCCD) were investigated. The scratch resistance and thermal decomposition temperature of PUD film prepared with PCCD is worse than those prepared with PCD, poly(hexamethylene carbonate) glycol. While, glass transition temperature of PUD film prepared with PCCD was higher than that prepared with PCD. It might be due to the rigid cyclohexane structure in the PCCD.

Recent Progress in the Catalytic Decomposition of Methane in a Fluidized Bed for Hydrogen and Carbon Material Production (수소 및 탄소소재 생산을 위한 메탄 유동층 촉매분해 기술의 최근 동향)

  • Keon Bae;Kang Seok Go;Woohyun Kim;Doyeon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.175-188
    • /
    • 2023
  • Global interest in hydrogen energy is increasing as an eco-friendly future energy that can replace fossil fuels. Accordingly, a next-generation hydrogen production technology using microorganisms, nuclear power, etc. is being developed, while a lot of time and effort are still required to overcome the cost of hydrogen production based on fossil fuels. As a way to minimize greenhouse gas emissions in the hydrocarbon-based hydrogen production process, methane direct decomposition technology has recently attracted attention. In order to improve the economic feasibility of the process, the simultaneous production of value-added carbon materials with hydrogen can be one of the most essential aspects. For that purpose, various studies on catalysis related to the quality and yield of high-value carbon materials such as carbon nanotubes (CNTs). In terms of process technology, a number of the research and development of fluidized-bed reactors capable of continuous production and improved gas-solid contact efficiency has been attempted. Recently, methane direct decomposition technology using a fluidized bed has been developed to the extent that it can produce 270 kg/day of hydrogen and 1000 kg/day of carbon. Plus, with the development of catalyst regeneration, separation and recirculation technologies, the process efficiency can be further improved. This review paper investigates the recent development of catalysts and fluidized bed reactor for methane direct pyrolysis to identify the key challenges and opportunities.