• Title/Summary/Keyword: Carbon-Reduction of Transportation

Search Result 79, Processing Time 0.024 seconds

A Study on the Utilization of ESG for Reducing Carbon Emissions in the Building Sector and Development Directions (건물부문의 탄소배출량 절감을 위한 ESG의 활용방안과 발전방향)

  • Sang Duck Moon
    • Environmental and Resource Economics Review
    • /
    • v.31 no.4
    • /
    • pp.801-824
    • /
    • 2022
  • Recently, United Nations found that 38% of global carbon emissions are generated in the building sector, surpassing other industries (32%) and transportation (23%), and ESG is actively used as a way to reduce carbon emissions in the building sector, led by overseas advanced countries. In Korea, as the National Pension Service announced "Consider ESG with more than 50% of investment assets" this year, the move to introduce ESG in the building sector is accelerating, centering on construction companies and asset management companies. However, as the domestic ESG evaluation system is still mainly focused on corporate governance and social responsibility, interest in the environmental sector is lagging behind that of advanced countries. As ESG in the building sector is expected to grow rapidly over the next 10 years, I would like to suggest the following development directions. The first is the expansion of the incentive system. In order for the government to successfully implement policies related to ESG in the building sector, incentive system such as tax reduction and building standards should be expanded further than now in addition to negative systems such as rent restrictions and punishment taxes due to regulatory violations. Second, standardized ESG standards are established. Rather than creating an independent Korean ESG standard that is far from global standards, it is necessary to organize the common parts of global standards and evaluation methods and create and provide guidelines in the form of standard textbooks that can be used equally by all stakeholders. Third, it is an effort to link ESG in the building sector with Digital Transformation(DX). This is because actual energy savings and carbon emission reduction can be realized only when the operation method of the building sector, which is operated mainly by manpower, is digitalized and converted to an intelligent way.

Time-Series Analysis and Estimation of Prospect Emissions and Prospected Reduction of Greenhouse Gas Emissions in Chungbuk (온실가스 배출량 시계열 분석과 전망 배출량 및 감축 감재량 추정 - 충북을 중심으로 -)

  • Jung, Okjin;Moon, Yun Seob;Youn, Daeok;Song, Hyunggyu
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.41-59
    • /
    • 2022
  • In accordance with the enactment of 'the Paris Agreement' in 2015 and 'the Framework Act on Carbon Neutrality and Green Growth for Response to the Climate Crisis' in 2021, each local government has set appropriate reduction target of greenhouse gas to achieve the nationally determined contribution (NDC, the reduction target of 40% compared to 2018) of greenhouse gas (GHG) emissions in 2030. In this study, the current distribution of GHG emissions was analyzed in a time series centered on the Chungbuk region for the period from 1990 to 2018, with the aim of reducing GHG emissions in Chungbuk by 2030 based on the 2030 NDC and scenario. In addition, the prospected reduction by 2030 was estimated considering the projected emissions according to Busines As Usual in order to achieve the target reduction of GHG emissions. Our results showed that GHG emissions in Chungbuk and Korea have been increasing since 1990 owing to population and economic growth. GHG emissions in 2018 in Chungbuk were very low (3.9 %) relative to the national value. Moreover, emissions from fuel combustion, such as cement and lime production, manufacturing and construction industries, and transportation industries, were the main sources. Furthermore, the 2030 target of GHG emission reduction in Chungbuk was set at 40.2% relative to the 2018 value, in accordance with the 2030 NDC and 2050 carbon-zero national scenario. Therefore, when projected emissions were considered, the prospected reduction to achieve the target reduction of GHG emissions was estimated to be 46.8% relative to 2018. The above results highlight the importance of meeting the prospected reduction of GHG emissions through reduction means in each sector to achieve the national and local GHG reduction target. In addition, to achieve the 2030 NDC and 2050 carbon zero, the country and each local government, including Chungbuk, need to estimate projected emissions by year, determine reduction targets and prospect reductions every year, and prepare specific means to reduce GHG emissions.

Mechanical and Electrical Properties of Self-sensing Grout Material with a High-Volume Ultrafine Fly Ash Replacement (초고분말 플라이 애시를 다량 치환한 자기감지형 그라우트재의 역학적 및 전기적 특성)

  • Lee, Gun-Cheol;Kim, Young-Min;Im, Geon-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.215-226
    • /
    • 2024
  • This study presents an experimental investigation into the performance of self-sensing grout formulated with a high volume of ultra-fine fly ash(UHFA). To explore the potential benefits of alternative cementitious materials, the research examined the effect of substituting UHFA with equal parts of blast furnace slag(BFS) fine powder. Both UHFA and BFS are byproducts generated in significant quantities by industrial processes. The evaluation focused on the fresh properties of the grout, including its flow characteristics, as well as the hardened properties such as compressive strength, dimensional stability(length change rate), and electrical properties. The experimental results demonstrated that incorporating UHFA resulted in a substantial reduction in the plastic viscosity of the grout, translating to improved flowability. Additionally, the compressive strength of the UHFA-modified grout surpassed that of the reference grout(without UHFA substitution) at all curing ages investigated. Interestingly, the electrical characteristics, as indicated by the relationships between FCR-stress and FCR-strain, exhibited similar trends for both grout mixtures.

Absorption Characteristics of Carbon Dioxide by Water-lean Diethylenetriamine Absorbents Mixed with Physical Solvents (물리 흡수제를 포함한 디에틸렌트리아민(Diethylenetriamine) 저수계 흡수제에서의 이산화탄소 흡수 특성)

  • Lee, Hwa Young;Seok, Chang Hwan;You, Jong-Kyun;Hong, Yeon Ki
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.50-54
    • /
    • 2018
  • In this work, N-methyl-2-pyrrolidone (NMP) was added into diethylenetriamine (DETA) aqueous solution for high $CO_2$ loading via phase splitting of absorbents during $CO_2$ absorption. Immiscible two phases were formed in the range of more than 30 wt% of NMP in 2 M DETA + NMP + water absorbents because of low solubility of DETA-carbamate in NMP solution. As the composition of NMP in the absorbents increased, the difference of $CO_2$ loading between each phase increased and the volume of bottom phase decreased. In $CO_2$ absorption in packed column by 2 M DETA + NMP + water absorbents, the absorption rate decreased in the range of more than 40 wt% of NMP. It is due to the increasing of mass transfer resistance in liquid film of absorbents at the high concentration of NMP. DETA + NMP + water absorbent is expected as the promising one for reducing the regeneration energy of absorbents according to volume reduction of $CO_2-rich$ phase.

Estimating Climate Pollutants Emissions and Service Demands considering Socio-economic Change: Residential·Commercial Sector, Transportation Sector, Industrial Sector (사회경제 변화를 고려한 서비스 수요 및 기후변화 유발물질 배출량 예측: 가정·상업부문, 교통부문, 산업부문을 중심으로)

  • Park, Jin-Han;Lee, Dong-Kun;Lee, Mi-Jin;Park, Chan;Jung, Tae-Yong;Kim, Sang-Kyun;Hong, Sung-Chul;Baek, So-Jin;Lee, Jang-Hoon
    • Journal of Climate Change Research
    • /
    • v.6 no.4
    • /
    • pp.291-302
    • /
    • 2015
  • Vulnerability due to climate change depends on the concentration of carbon dioxide emissions over several upcoming decades. The objective of this study is to estimate the concentration of greenhouse gases and air pollutants in 2100, while also accounting for expected socio-economic changes in Korea. First, we intend to prepare scenarios for possible socioeconomic changes in Korea: business as usual (BAU), high growth and low growth. Secondly, we aim to predict services demands in residential?commercial sector, transportation sector, industrial sector for each scenarios. Finally, the emissions of LLGHG and SLCP will be estimated on the basis of the predicted service demands. The study results project that in Korea, LLGHG emissions will be approximately $660Mt\;CO_2\;eq$. and SLCP emissions will be approximately 3.81 Mt, -including black carbon (BC) by 2100. The transportation and industrial sectors are the major source for LLGHG emissions, and the residential and commercial sector serve as the SLCP source. Later, additional studies on the cost and benefit of mitigation should be carried out by comparing the reduced use of materials that cause climate change as a result of reduction policies and the socioeconomic cost.

Assessment of Carbon Emission for Quantification of Environmental Load on Structural Glued Laminated Timber in Korea (국산 구조용 집성재의 환경부하 정량화를 위한 온실가스 배출량 분석)

  • Chang, Yoon-Seong;Kim, Sejong;Son, Whi-Lim;Lee, Sang-Joon;Shim, Kug-Bo;Yeo, Hwanmyeong;Kim, Kwang-Mo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.449-456
    • /
    • 2016
  • This study was aimed to quantify the amount of carbon dioxide emissions and to suggest suitable plans which consider the carbon emission reduction in the manufacturing process of the domestic structural glued laminated timber. Field investigation on two glued laminated timber manufacturers was conducted to find out material flow input values such as raw materials, transportation, manufacturing process, and energy consumption during manufacturing process. Based on the collected data and the relevant literatures about life cycle inventory (LCI), the amount of carbon dioxide emission per unit volume was quantified. Results show that the carbon dioxide emissions for sawing, drying and laminating process are 31.0, 109.0, 94.2 kg $CO_2eq./m^3$, respectively. These results show 13% lesser amount of total carbon dioxide emissions compared with the imported glued laminated timber in Korea. Furthermore, it was decreased about 37% when the fossil fuel would be replaced with biomass fuel in drying process. Findings from this study is effectively used as the basic data on the life cycle assessment of wooden building.

Advancements in High-Efficiency Ammonia Synthesis Technology: A Key Solution for Green Hydrogen Storage in the Carbon-Neutral Era (청정 수소 저장을 위한 고효율, 저탄소 배출 암모니아 합성기술 동향)

  • Weonjun Jeong;Jintae Kim;Kanghee Cho
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.71-93
    • /
    • 2024
  • Recently, the establishment of a hydrogen-based economy and the utilization of low-carbon energy sources, particularly for shipping and power generation, have been in high demand in order to achieve carbon neutrality by 2050. In particular, ammonia is gaining renewed attention because it is capable of serving as a key facilitator for high-efficiency green hydrogen storage and transportation and it is also capable of serving as a low-carbon energy source. Although ammonia can be synthesized through the Haber-Bosch process, the high energy consumption and carbon emissions associated with this process result in minimal carbon reduction. To address the critical drawbacks of the traditional Haber-Bosch process, various thermochemical synthesis methods have been developed recently, allowing for the synthesis of ammonia with lower carbon emissions and a higher energy efficiency. Research is also progressing in the development of high-performance catalyst materials that are capable of demonstrating sufficient ammonia synthesis performance under milder process conditions compared to conventional methods. Additionally, a variety of different processes such as chemical-looping ammonia synthesis, plasma synthesis, and mechanochemical synthesis are being applied diversely. This review aims to provide a detailed overview of the emerging ammonia synthesis technologies that have been developed to effectively store green hydrogen for future applications.

Development of Evaluation Factor of Certification System for Korean Green Road -Focused on Design/Construction Stage of Expressway and National Highway- (한국형 녹색도로인증시스템 평가요소 개발 - 고속도로 및 국도 건설단계 중심 -)

  • Park, Jae-Woo;Lee, Du-Heon;Koo, Jai-Dong;Noh, Kwan-Sub
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.6
    • /
    • pp.16-25
    • /
    • 2014
  • Recent national policy agenda of 'Low-Carbon Green Growth' has been implemented as the important vision of the country. The government has set a target of entering the seven major world powers of Green Nation at 2020, and five major world powers at 2050. In order to achieve the goal, the reduction of greenhouse gases and the composition of green land and transportation has been promoted as an important policy. In a construction industry sector, policies and technologies for reducing greenhouse gas emissions and energy have been actively developed. In the case of developed countries, research for green road infrastructure has been conducted, which is the basis for certification system of green highway. This paper benchmarks the policies and cases of developed countries, verifies the applicability in the domestic road sector, and suggests the introduction of the certification system of green highway.

Prediction of the Electric Vehicles Supply and Electricity Demand Using Growth Models (성장모형을 활용한 전기자동차 보급과 전력수요 예측)

  • Hyo Seung Han;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.4
    • /
    • pp.132-144
    • /
    • 2023
  • European and American countries are actively promoting eco-friendly cars to reduce exhaust emissions from internal combustion engines. In Korea, the "4th Basic Plan for Eco-Friendly Vehicles" aims to promote eco-friendly cars by improving charging infrastructure, expanding incentive systems, and targeting the supply of 1.13 million eco-friendly cars by 2025. As rapid growth in the number of electric vehicles sold is expected, estimates are required of this growth and corresponding power demands. In this study, the authors used a growth model to predict future growth in the electric vehicle market and a previously derived electricity generation model to estimate corresponding power demands up to 2036, the target year of the "10th Basic Plan for Power Supply and Demand". The results obtained provide useful basic research data for future electric vehicle infrastructure planning.

Strategies of the Korea-UAE Cooperation for Hydrogen Station and Hydrogen Bus (한국과 UAE의 수소 충전소와 수소 버스 협력 전략)

  • KWON, YOUNG-IN;KIM, SEOLJOO;BAEK, YOUNGSUN;JUNG, BYUNGDO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.431-441
    • /
    • 2021
  • UAE is first country in Middle East to approve UN Paris Climate Agreement. Ministry of Climate Change and Environment of UAE announced National Climate Change Plan for carbon reduction to replace 24% by clean energy. Dubai open its first hydrogen station in UAE and Middle East in 2017, and Abu Dhabi planed to open second hydrogen station in 2019 but not realized. Korean government announced hydrogen economy roadmap in 2019 and various hydrogen cooperation are realized between UAE, Korea, Germany, USA, and Japan. MOU between Ministry of State of UAE and Ministry of Land, Infrastructure and Transport of Korea in 2019 for the cooperation of hydrogen city. This study propose strategies for the 'Hydrogen Based Public Transport in UAE' by the support of Korea government considering various stakeholder.