• Title/Summary/Keyword: Carbon tip

Search Result 189, Processing Time 0.035 seconds

Effects of Mineral Media, Carbon Sources and Phytohormones on Micropropagation of Alnus hirsuta (물오리나무(Alnus hirsuta)의 기내증식에 미치는 기본배지, 탄소원 및 식물호르몬의 영향)

  • 김경희
    • Journal of Plant Biology
    • /
    • v.35 no.2
    • /
    • pp.135-142
    • /
    • 1992
  • Shoot tip explants from germinated seeds of Alnus hirsuta were cultured on NT (Nagata and Takebe, 1971) mineral salts medium supplemented with 6% glucose, MS (Murashige and Skoog, 1962) vitamin mixture, polyvinylpyrrolidone (PVP) and $0-50\;\mu\textrm{M}$ 6-benzylaminopurine (BAP). Five $\mu\textrm{M}$ BAP was found to give the highest shoot multiplication rate. Accordingly about 200 shoots were obtained for further experiments by multiplying shoots on this medium for 4-5 months. Regardless of carbon sources, NT mineral medium produced 3-12 times of shoots than MS mineral medium did. On NT mineral medium, 3% sucrose, 3% glucose and 6% glucose yielded no significant differences. It was observed that media consisting of 1/4-1/2 strength NT mineral salts, 3% sucrose and $1-8\;\mu\textrm{M}$ IBA produced about 100% rooting rate. Almost 100% of the resulting plantlets survived after transfer to the soil by decreasing humidity stepwise.epwise.

  • PDF

Fabrication of field emitters using a filtration-taping-transfer method

  • Song, Ye-Nan;Shin, Dong-Hoon;Sun, Yuning;Shin, Ji-Hong;Lee, Cheol-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.466-466
    • /
    • 2011
  • There have been several methods to fabricate carbon nanotube (CNT) emitters, which include as-grown, spraying, screen-printing, electrophoresis and bonding methods. Unfortunately, these techniques generally suffer from two main problems. One is a weak mechanical adhesion between CNTs and the cathode. The as-grown, spraying and electrophoresis methods show a weak mechanical adhesion between CNTs and the cathodes, which induces CNT emitters pulled out under a high electric field. The other is a severe degradation of the CNT tip due to organic binders used in the fabrication process. The screen-printing method which is widely used to fabricate CNT emitters generally shows a critical degradation of CNT emitters caused by the organic binder. Such kinds of problems induce a short lifetime of the CNT field emitters which may limit their practical applications. Therefore, a robust CNT emitter which has the strong mechanical adhesion and no degradation is still a great challenge. Here, we introduce a simple and effective technique for fabrication of CNT field emitter, namely filtration-taping-transfer method. The CNT emitters fabricated by the filtration-taping-transfer method show the low turn-on electric fields, the high emission current, good uniformity and good stability. The enhanced emission performance of the CNT emitters is mainly attributed to high emission sites on the emitter area, and to good ohmic contact and strong mechanical adhesion between the emitters and cathodes. The CNT emitters using a simple and effective fabrication method can be applied for various field emission applications such as field emission displays, lamps, e-beam sources, and x-ray sources. The detail fabrication process will be covered at the poster.

  • PDF

Quenching Effect in an Optical Fiber Type Small Size Dosimeter Irradiated with 290 MeV·u-1 Carbon Ions

  • Hirata, Yuho;Watanabe, Kenichi;Uritani, Akira;Yamazaki, Atsushi;Koba, Yusuke;Matsufuji, Naruhiro
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.222-228
    • /
    • 2016
  • Background: We are developing a small size dosimeter for dose estimation in particle therapies. The developed dosimeter is an optical fiber based dosimeter mounting an radiation induced luminescence material, such as an OSL or a scintillator, at a tip. These materials generally suffer from the quenching effect under high LET particle irradiation. Materials and Methods: We fabricated two types of the small size dosimeters. They used an OSL material Eu:BaFBr and a BGO scintillator. Carbon ions were irradiated into the fabricated dosimeters at Heavy Ion Medical Accelerator in Chiba (HIMAC). The small size dosimeters were set behind the water equivalent acrylic phantom. Bragg peak was observed by changing the phantom thickness. An ion chamber was also placed near the small size dosimeters as a reference. Results and Discussion: Eu:BaFBr and BGO dosimeters showed a Bragg peak at the same thickness as the ion chamber. Under high LET particle irradiation, the response of the luminescence-based small size dosimeters deteriorated compared with that of the ion chamber due to the quenching effect. We confirmed the luminescence efficiency of Eu:BaFBr and BGO decrease with the LET. The reduction coefficient of luminescence efficiency was different between the BGO and the Eu:BaFBr. The LET can be determined from the luminescence ratio between Eu:BaFBr and BGO, and the dosimeter response can be corrected. Conclusion: We evaluated the LET dependence of the luminescence efficiency of the BGO and Eu:BaFBr as the quenching effect. We propose and discuss the correction of the quenching effect using the signal intensity ratio of the both materials. Although the correction precision is not sufficient, feasibility of the proposed correction method is proved through basic experiments.

Fabrication of a Nano-sized Conical-type Tungsten Field-emitter Based on Carbon Nanotubes (탄소나노튜브를 이용한 텅스텐 나노팁 전계방출기 제작)

  • Park, Chang-Kyun;Kim, Jong-Pil;Kim, Young-Kwang;Yun, Sung-Jun;Kim, Won;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.90-91
    • /
    • 2007
  • Nano-sized conical-type tungsten(W) field-emitters based on carbon nanotubes(CNTs) are fabricated with the configuration of CNTs/catalyst/buffer/W-tip by adopting various buffer layers, such as TiN, Al, Al/TiN, and Al/hi/TiN. This study focuses on elucidating how the buffer layers affect the structural properties of CNTs and the electron-emission characteristics of CNT-emitters. Field-emission scanning electron microscopy(FESEM) and high-resolution transmission electron microscopy(HRTEM) are used to monitor the nanostructures and surface morphologies of all the catalysts and CNTs grown. The crystalline structure of CNTs is also characterized by Raman spectroscopy. Furthermore, the measurement of field-emission characteristics for all the field-emitters fabricated shows that the emitter using the Al/Ni/TiN stacked buffer reveals the most excellent performances, such as maximum emission current of $202{\mu}A$, threshold field of 2.08V/${\mu}m$, and long-term (up to 24h) stability of emission current.

  • PDF

Materials Compatibility and Structure Optimization of Test Department Probe for Quality Test of Fingerprint Sensor (지문인식센서 품질평가를 위한 검사부 프로브의 소재 적합성과 구조 최적화 연구)

  • Son, Eun-Won;Youn, Ji Won;Kim, Dae Up;Lim, Jae-Won;Kim, Kwang-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.73-77
    • /
    • 2017
  • Recently, fingerprint sensors have widely used for personal information security, and require quality evaluation to reduce an error of their recognition rate. Quality of fingerprint sensors is evaluated by variation of their electrical resistance introducing by contacts between a probe tip and a sensor electrode, Investigation on the materials compatability and structure optimization of probe is required to reduce deformation of sensor electrode for repeatability of quality testing. Nickel, steel(SK4), beryllium copper, and phosphor bronze were considered as probe materials, and beryllium copper was the most appropriate for materials of probe tips, considering indentation and contact resistance while being contacted probe tips on electrodes. Probes of an inspection part were manufactured with the single-unit structure for physical damage prevention and parallel processing capability. Inspection repeatability was evaluated by voltage variation of fingerprint sensors when the specific current was applied. A single-unit inspection part with beryllium copper probe tips showed excellent repeatability within ${\pm}0.003V$ of its voltage variation.

The Natural Ingredient Application Method of Cigarette Filter (천연소재 담배 필터 적용 방법)

  • Kim, Min-Kyu;Yeo, Woon-Hyung;Kim, Soo-Ho;Oh, Kyung-Hwan;Jin, Yong-Sook;Hwang, Eui-Il
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.35 no.1
    • /
    • pp.13-19
    • /
    • 2013
  • The natural ingredient has been utilized variety of the food and medicine. The aromatherapy well known prevent disease and healthy promotion using the essential oil derived extracted plants. In this work, natural ingredient include herb granulated for application of tobacco filter. That used by granulation using fluidized bed granulator(top-spray, bottom-spray and tangential-spray) and wet granule method. According to ingredient can used granulating method selectivity. So, we used fluid-bed granulator and wet granule method. Grapefruit extract coated sugar particle using the bottom-spray method and red ginseng granule granulated red ginseng powder using the tangential-spray method in a fluidized bed. Then, these granules applied the tobacco filter after due consideration add amount and operation efficiency. As a result, wet granule was loaded dual filter because that similarity carbon granule. And it was fitted in added 3mg/mm, per tip in the tobacco end part. Another type, fuidized bed granules was filled cavity filter because it has high hardness, sphere shape.

Field-emission properties of carbon nanotubes coated by zinc oxide films (산화아연막이 증착된 탄소 나노튜브의 전계방출 특성)

  • Kim, Jong-Pil;Noh, Young-Rok;Lee, Sang-Yeol;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1270_1271
    • /
    • 2009
  • In this research, gallium-incorporated zinc oxide (ZnO:Ga) thin films have been used as a coating material for enhancing the field-emission property of CNT-emitters. Multi-walled CNTs were directly grown on conical-type ($250{\mu}m$ in diameter) metal-tip substrates at $700^{\circ}C$ by inductively coupled plasma-chemical vapor deposition (ICP-CVD). The pulsed laser deposition (PLD) technique was used to produce 5wt% gallium-doped ZnO (5GZO) films with very low stress. The structural properties of ZnO and 5GZO coated CNTs were characterized by Raman spectroscopy. Field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM) were also used to monitor the variation in the morphology and microstructure of CNTs before and after 5GZO-coating. The measurement of the field emission characteristics showed that the emitter that coated the 5GZO (10nm) on CNTs exhibited the best performance: a maximum emission current of $325{\mu}A$, a threshold field of 2.2 V/${\mu}m$.

  • PDF

Failure Behaviors Depending on the Notch Location of the Impact Test Specimens on the HAZ (용접열영향부 충격시험편 노치 위치에 따른 파괴거동)

  • Jang, Yun-Chan;Hong, Jae-Keun;Park, Ji-Hong;Kim, Dong-Wook;Lee, Young-Seog
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.706-711
    • /
    • 2007
  • Numerical studies were performed to examine the effects of notch location of impact specimens on the failure behavior of HAZ (heat affected zone) when Charpy V-notch impact test were made at a low temperature ($1^{\circ}C$). Carbon steel plate (SA-516 Gr. 70) with thickness of 25mm for pressure vessel was welded by SMAW (shielded metal-arc welding) and specimens were fabricated from the welded plate. Charpy tests were then performed with specimens having different notch positions of specimens varying from the fusion line through HAZ to base metal. A series of finite element analysis which simulates the Charpy test and crack propagation initiating at the tip of V-notch was carried out as well. The finite element analysis takes into account the irregular fusion line and non-homogenous material properties due to the notch location of the specimen in HAZ. Results reveals that the energies absorbed during impact test depend significantly on the notch location and direction of specimen. Finite element analysis also demonstrates that the notch location of specimens, to a great extent, influences the reliability and consistency of the test.

  • PDF

Active shape change of an SMA hybrid composite plate

  • Daghia, Federica;Inman, Daniel J.;Ubertini, Francesco;Viola, Erasmo
    • Smart Structures and Systems
    • /
    • v.6 no.2
    • /
    • pp.91-100
    • /
    • 2010
  • An experimental study was carried out to investigate the shape control of plates via embedded shape memory alloy (SMA) wires. An extensive body of literature proposes the use of SMA wires to actively modify the shape or stiffness of a structure; in most cases, however, the study focuses on modeling and little experimental data is available. In this work, a simple proof of concept specimen was built by attaching four prestrained SMA wires to one side of a carbon fiber laminate plate strip. The specimen was clamped at one end and tested in an environmental chamber, measuring the tip displacement and the SMA temperature. At heating, actuation of the SMA wires bends the plate; at cooling deformation is partially recovered. The specimen was actuated a few times between two fixed temperatures $T_c$ and $T_h$, whereas in the last actuation a temperature $T_f$ > $T_h$ was reached. Contrary to most model predictions, in the first actuation the transformation temperatures are significantly higher than in the following cycles, which are stable. Moreover, if the temperature $T_h$ is exceeded, two separate actuations occur during heating: the first follows the path of the stable cycles; the second, starting at $T_h$, is similar to the first cycle. An interpretation of the phenomenon is given using some differential scanning calorimeter (DSC) measurements. The observed behavior emphasizes the need to build a more comprehensive constitutive model able to include these effects.

A Study on the Correlation Between Nugget Diameter and Contact Diameter of Sheets by Electrode Force (點熔接 의 너깃지름 과 板間接觸지름 의 關聯性)

  • 송삼홍;김부동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.3
    • /
    • pp.313-318
    • /
    • 1983
  • It is required in designing a spot welding to get in advance an estimated figure of nugget diameter. A method of estimating nugget diameter of low carbon steel sheets is suggested in tesms of utilizing elastic calculation in theory and of making a sectional observation of specimen of spot welding in experiment. The resultant findings are summarized as follows: 1) A contact diameter of sheet, 2.gamma.$_{o}$=d sub e/+(1.1)t, wheer de is the electrode tip diameter and t is the thickness of sheets. 2) The practical measurement of the nugget diameter reveals that $d_{n}$=(1.05) $d_{e}$+(0.9)t, and $d_{b}$ is less by 0.8-4.3% than 2.gamma.$_{o}$. 3) The more $d_{n}$ is as compared with t, the less the difference between a theoretical value and an experimental value is. 4) In the spot welding of thin steel sheets less than 3mm in thickness that are commonly used in sheet metal works, the contact diameter equals the nugget diameter. In this case, either the theoretical or experimental approach can be used for estimating the nugget diameter.meter.ter.r.