†. **. **. *.

*

Failure Behaviors Depending on the Notch Location of the Impact Test Specimens on the HAZ

Yunchan Jang, Jaekeun Hong, Jihong Park, Dongwook Kim, & Youngseog Lee

Key Words :	Notch Location(), failure sin	nulation(), HAZ ()
	Charpy V-notch test(V-)		

Abstract

Numerical studies were performed to examine the effects of notch location of impact specimens on the failure behavior of HAZ (heat affected zone) when Charpy V-notch impact test were made at a low temperature (1). Carbon steel plate (SA-516 Gr. 70) with thickness of 25mm for pressure vessel was welded by SMAW (shielded metal-arc welding) and specimens were fabricated from the welded plate. Charpy tests were then performed with specimens having different notch positions of specimens varying from the fusion line through HAZ to base metal. A series of finite element analysis which simulates the Charpy test and crack propagation initiating at the tip of V-notch was carried out as well. The finite element analysis takes into account the irregular fusion line and non-homogenous material properties due to the notch location of the specimen in HAZ. Results reveals that the energies absorbed during impact test depend significantly on the notch location of specimen. Finite element analysis also demonstrates that the notch location of specimens, to a great extent, influences the reliability and consistency of the test.

						V-		(Charpy	V-notch test)
V Y	:	(m/s) (MPa)			가	(brittle	failu	re)	(duct	ile failure)
Ηv	:	$(psi 10^3)$								
R_h	:	(mm)								,
R _a	:	(mm)								
W	:	(Weld metal)	(mm)						(toughness)	
C_L	:	n)								가
L	:	(mm)			•					
				(),		,		,
		1.						(Notch)	가	
†	,								·	(
*)				
**	<i>,</i>									
	E-mail : TEL : (0	ysl@cau.ac.kr 2)820-5256 FAX : (02)8	314-9476		가 ,		가	가		,

Fig. 2 Dimensions of test specimen, striking, edge and anvil

Fig. 3 Schematic illustration of welding specimen

(a) Specimen having 0.5mm distance between fusion line and $C_{L}\,\text{of notch}$

(b) Specimen having 1mm distance between fusion line and $C_{L}\, of \, notch$

(c) Specimen having 1.5mm distance between fusion line and C_L of notch

Fig. 4 Notch location of test specimen

Fig. 5 Hardness of impact test specimen

3.

가

3.1

ABAQUS 6.6 (HAZ: Heat Affected Zone) 가 . 가 가

(fusion line)

5 , (Weld metal) (1) Hardness = cY (1)

c . 3 . (Explicit) . 8 3-D , (Transition mesh)

(Element removing) . v= 6 m/s,0.32 (millisecond) . $6 \qquad 3$

4.1 HAZ-1, (b) 4 (a) HAZ-2, (c) HAZ-3 1 HAZ-1, HAZ-2 가 HAZ-3 . 가 30 Joule 가 . HAZ-3 가 . 가

Table 1 Comparison b	etween experiment and FE-
a	nalysis

Absorbed [J]	Base metal	HAZ-1	HAZ-2	HAZ-3
Experiment	179	238	216	160
FE- analysis	178	240	220	190

		. (Base metal)	
	가	HAZ-3	(Weld
metal)		가	HAZ-1
	가		

 8~11
 ・

 ブト
 (Ultimate stress)

 (Strain)
 (Failure strain)

 .
 (Ductile damage criterion)

 ブト
 ブト

(Damage) 1 가 . 8

Elements	С	Si	Mn	Р	S	Cu	Ni	Cr	Mo	V	Nb
Wt. %	0.18	0.30	1.15	0.014	0.003	0.17	0.31	0.02	0.098	0.026	0.016

Table 2 Chemical composition of SA 516 Gr. 70 steel

Table 3 Mechanical property of SA 516 Gr.70 steel

Yield strength	Tensile strengh	Elongation	Abs. energy	Lateral expans.	Shear fracture
[MPa]	[MPa]	[%]	[J]	[mils,]	[%]
400	560	22	93	54	33

Table 4 Welding conditions of SA 516 Gr. 70 steel

Process	Current [A]	Voltage [V]	Travel speed [cm / min]	Interpass temp. []
SMAW	110 ~ 170	30 ~ 35	12 ~ 15	54

Fig. 8 Damage criterion contour of Base Metal

Fig. 9 Damage criterion contour of HAZ-1

Fig. 10 Damage criterion contour of HAZ-2

9~11 . HAZ-2, HAZ-3 .7 .1 HAZ-3 .7, ..., HAZ-1,2 .7, ..., HAZ-1,2 .7, ..., HAZ-3 .7, ..., TAZ-3 .7, ..., TAZ-3 .7, ..., TAZ-3 .7, ..., TAZ-3

4.2

가

가 .

가

2

(1) Kim, J. H., Yoon, E. P., 1998, "Notch position in the HAZ specimen of reactor pressure vessel steel," *Journal of Nuclear Materials*, Vol. 257, No. 3, pp. 303~308.

(2) Kim, Joo. Hag., and Yoon, Eui. Pak., 1998, "Notch Toughness and Microstructural Alterations in the Unit Heat-Affected Zone of SA 508 CI. 3 Reactor Pressure Vessel Steel," *J. Kor. Inst. Met. & Mater*, Vol. 36, No. 8, pp. 1329~1337.

(3) Shin, Hak. Soo., Kim, Joo. Hak., Hong, Jun. Hwa., Moon, Jong. Gul., and Chun, In. Sang., 1999, "Transition Region Fracture Toughness and Microstructural Alterations in the Weld HAZ of RPV Steel," *J. Kor. Inst. Met. & Mater*, Vol. 37, No. 10, pp. 1260~1266.

(4) Hong, Jaekeun., Son, Youngho., Park, Jihong., Lee, Byunghoon., Yoon, Seogchan., and Kang, Chungyun., 2007, *Proceeding of 15th International Conference on Nuclear Engineering*, Japan, (to be published)

(5) Tvergaard, V., and Needleman, A., 1988, "Analysis of the Charpy V-notch test for welds," *Engineering Fracture Mechnics*, Vol. 65, No. 6, pp. 627~643.

(6) Tvergaard, V., Needleman, A., 2004, "3D analyses of the effect of weld orientation in Charpy specimens," *Engineering Fracture Mechnics*, Vol. 71, No. 15, pp. 2179~2195.