• Title/Summary/Keyword: Carbon stocks

Search Result 98, Processing Time 0.022 seconds

An Estimation of the Carbon Stocks in Harvested Wood Products: Accounting Approaches and Implications for Korea (목제품 내 탄소 저장량 추정 : 계정 방법 및 시사점)

  • Choi, Soo-Im;Joo, Rin-Won;Lee, Soo-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.507-517
    • /
    • 2010
  • This study estimated the amount of carbon stocks in harvested wood products (HWP) using accounting approaches suggested by 2006 IPCC guidelines and analyzed the impacts of different approaches on national greenhouse gas inventory and the forest sector in Korea. The change in carbon stocks was calculated at the level of semi-finished wood products, which cover sawnwood, wood-based panels, other industrial wood, paper and paperboard. An estimation of the changes in carbon stocks in HWP in use for the period 1970~2008 varied between -9,023 Gg $CO_2$/yr and 4,052 Gg $CO_2$/yr depending on the accounting approach used. The stock-change approach provided the most favorable results because Korea was a net importer of wood products. However, each approach generates different impacts on harvest, trade, the use of wood for energy production and recycling. When deciding its position on accounting approach, thus, the Government should consider future direction of national forest policies as well as the effect on national greenhouse gas inventory for the minimization of negative impacts resulting from its selection.

Overview of Research Trends in Estimation of Forest Carbon Stocks Based on Remote Sensing and GIS (원격탐사와 GIS 기반의 산림탄소저장량 추정에 관한 주요국 연구동향 개관)

  • Kim, Kyoung-Min;Lee, Jung-Bin;Kim, Eun-Sook;Park, Hyun-Ju;Roh, Young-Hee;Lee, Seung-Ho;Park, Key-Ho;Shin, Hyu-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.236-256
    • /
    • 2011
  • Forest carbon stocks change due to land use change is an important data required by UNFCCC(United Nations framework convention on climate change). Spatially explicit estimation of forest carbon stocks based on IPCC GPG(intergovernmental panel on climate change good practice guidance) tier 3 gives high reliability. But a current estimation which was aggregated from NFI data doesn't have detail forest carbon stocks by polygon or cell. In order to improve an estimation remote sensing and GIS have been used especially in Europe and North America. We divided research trends in main countries into 4 categories such as remote sensing, GIS, geostatistics and environmental modeling considering spatial heterogeneity. The easiest way to apply is combination NFI data with forest type map based on GIS. Considering especially complicated forest structure of Korea, geostatistics is useful to estimate local variation of forest carbon. In addition, fine scale image is good for verification of forest carbon stocks and determination of CDM site. Related domestic researches are still on initial status and forest carbon stocks are mainly estimated using k-nearest neighbor(k-NN). In order to select suitable method for forest in Korea, an applicability of diverse spatial data and algorithm must be considered. Also the comparison between methods is required.

Carbon Storage of Exotic Slash Pine Plantations in Subtropical China

  • Jin, Ling;Liu, Yuanqiu;Ning, Jinkui;Liu, Liangying;Li, Xiaodong
    • Journal of Forest and Environmental Science
    • /
    • v.35 no.3
    • /
    • pp.150-158
    • /
    • 2019
  • Exotic conifer trees have been extensively planted in southern China because of their high apparent growth and yield. These fast-growing plantations are expected to persist as a considerable potential for temporary and long-term carbon sink to offset greenhouse gas emissions. However, information on the carbon storage across different age ranges in exotic pine plantations is often lacking. We first estimated the ecosystem carbon storage across different age ranges of exotic pine plantations in China by quantifying above- and below-ground ecosystem carbon pools. The carbon storage of each tree component of exotic pine (Pinus elliottii) increased significantly with increasing age in Duchang and Yiyang areas. The stem carbon storage except <10 years in Ji'an areas was the largest component among all other components, which accounts for about 50% of the total carbon storage followed by roots (~28%), branches (~18%), and foliage (~9%). The mean total tree carbon storage of slash pine plantations for <10, 10-20 and 20-30 years across three study areas was 3.69, 13.91 and $20.57Mg\;ha^{-1}$, respectively. The carbon stocks in understory and forest floor were age-independent. Total tree and soil were two dominant carbon pools in slash pine plantations at all age sequences. The carbon contribution of aboveground ecosystem increased with increasing age, while that of belowground ecosystem declined. The mean total ecosystem carbon storage of slash pine plantations for <10, 10-20 and 20-30 years across China was 30.26, 98.66 and $98.89Mg\;ha^{-1}$, respectively. Although subtropical climate in China was suitable for slash pine growth, the mean total carbon stocks in slash pine plantations at all age sequences from China were lower than that values reported in American slash pine plantations.

Carbon and Nitrogen Stocks of Trees and Soils in a 'Niitaka' Pear Orchard ('신고'배 재배지 내 수체 및 토양의 탄소 및 질소 저장량)

  • Lee, Tae-Kyu;Choi, Jang-Jeon;Kim, Jong-Sung;Lee, Han-Chan;Ro, Hee-Myong
    • Horticultural Science & Technology
    • /
    • v.31 no.6
    • /
    • pp.828-832
    • /
    • 2013
  • To report country-specific carbon and nitrogen stocks data in a pear orchard by Tier 3 approach of 2006 IPCC guidelines for national greenhouse gas inventories, an experimental pear orchard field of the Pear Research Station, National Institute of Horticultural & Herbal Science, Rural Development Administration, Naju, Korea ($35^{\circ}01^{\prime}27.70N$, $126^{\circ}44^{\prime}53.50^{\prime\prime}E$, 6 m altitude), where 15-year-old 'Niitaka' pear (Pyrus pyrifolia Nakai cv. Niitaka) trees were planted at a $5.0m{\times}3.0m$ spacing on a Tatura trellis system, was chosen to assess the total amount of carbon and nitrogen stocks stored in the trees and orchard soil profiles. At the sampling time (August 2012), three trees were uprooted, and separated into six fractions: trunk, main branches, lateral branches (including shoots), leaves, fruits, and roots. Soil samples were collected from 0 to 0.6 m depth at 0.1 m intervals at 0.5 m from the trunk. Dry mass per tree was 4.7 kg for trunk, 13.3 kg for main branches, 13.9 kg for lateral branches, 3.7 kg for leaves, 6.7 kg for fruits, and 14.1 kg for roots. Amounts of C and N per tree were respectively 2.3 and 0.02 kg for trunk, 6.4 and 0.07 kg for main branches, 6.4 and 0.09 kg for lateral branches, 6.5 and 0.07 kg for roots, 1.7 and 0.07 kg for leaves, and 3.2 and 0.03 kg for fruits. Carbon and nitrogen stocks stored between the soil surface and a depth of 60 cm were 138.29 and $13.31Mg{\cdot}ha^{-1}$, respectively, while those contained in pear trees were 17.66 and $0.23Mg{\cdot}ha^{-1}$ based on a tree density of 667 $trees{\cdot}ha^{-1}$. Overall, carbon and nitrogen stocks per hectare stored in a pear orchard were 155.95 and 13.54 Mg, respectively.

Assessment of Carbon Stock and Uptake by Estimation of Stem Taper Equation for Pinus densiflora in Korea (우리나라 소나무의 수간곡선식 추정에 의한 탄소저장량 및 흡수량 산정)

  • Kang, Jin-Taek;Son, Yeong-Mo;Jeon, Ju-Hyeon;Lee, Sun-Jeoung
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.415-424
    • /
    • 2017
  • This study was conducted to estimate carbon stocks of Pinus densiflora with drawing volume of trees in each tree height and DBH applying the suitable stem taper equation and tree specific carbon emission factors, using collected growth data from all over the country. Information on distribution area, tree age, tree number per hectare, tree volume and volume stocks were obtained from the $5^{th}$ National Forest Inventory (2006~2010) and Statistical yearbook of forest (2016), and method provided in IPCC GPG was applied to estimate carbon stock and uptake. Performance in predicting stem diameter at a specific point along a stem in Pinus densiflora by applying Kozak's model, $d=a_{1}DBH^{a_2}a_3^{DBH}X^{b_{1}Z^2+b_2ln(Z+0.001)+b_3\sqrt{Z}+b_4e^z+b_5(\frac{DBH}{H})}$, which is well known equation in stem taper estimation, was evaluated with validations statistics, Fitness Index, Bias and Standard Error of Bias. Consequently, Kozak's model turned out to be suitable in all validations statistics. Stem volume table of P. densiflora was derived by applying Kozak's model and carbon stock tables in each tree height and DBH were developed with country-specific carbon emission factors ($WD=0.445t/m^3$, BEF = 1.445, R = 0.255) of P. densiflora. As the results of analysis in carbon uptake for each province, the values were high with Gangwon-do $9.4tCO_2/ha/yr$, Gyeongsandnam-do and Gyeonggi-do $8.7tCO_2/ha/yr$, Chungcheongnam-do $7.9tCO_2/ha/yr$ and Gyeongsangbuk-do $7.8tCO_2/ha/yr$ in order, and Jeju-do was the lowest with $6.8tC/ha/yr$. Total carbon stocks of P. densiflora were 127,677 thousands tC which is 25.5% compared with total percentage of forest and carbon stock per hectare (ha) was $84.5tC/ha/yr$ and $7.8tCO_2/ha/yr$, respectively.

Estimation of Aboveground Biomass Carbon Stock Using Landsat TM and Ratio Images - $k$NN algorithm and Regression Model Priority (Landsat TM 위성영상과 비율영상을 적용한 지상부 탄소 저장량 추정 - $k$NN 알고리즘 및 회귀 모델을 중점적으로)

  • Yoo, Su-Hong;Heo, Joon;Jung, Jae-Hoon;Han, Soo-Hee;Kim, Kyoung-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.2
    • /
    • pp.39-48
    • /
    • 2011
  • Global warming causes the climate change and makes severe damage to ecosystem and civilization Carbon dioxide greatly contributes to global warming, thus many studies have been conducted to estimate the forest biomass carbon stock as an important carbon storage. However, more studies are required for the selection and use of technique and remotely sensed data suitable for the carbon stock estimation in Korea In this study, the aboveground forest biomass carbon stocks of Danyang-Gun in South Korea was estimated using $k$NN($k$-Nearest Neighbor) algorithm and regression model, then the results were compared. The Landsat TM and 5th NFI(National Forest Inventory) data were prepared, and ratio images, which are effective in topographic effect correction and distinction of forest biomass, were also used. Consequently, it was found that $k$NN algorithm was better than regression model to estimate the forest carbon stocks in Danyang-Gun, and there was no significant improvement in terms of accuracy for the use of ratio images.

Carbon Stock Variation in Different Forest Types of Western Himalaya, Uttarakhand

  • Shahid, Mohommad;Joshi, Shambhu Prasad
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.2
    • /
    • pp.145-152
    • /
    • 2018
  • Quantification of Carbon stock has become in the contest of changing climate and mitigation potential of forests. Two different forest types, Dry Shiwalik Sal Forest and Moist Shiwalik Sal Forest in Barkot and Lachchiwala of Doon Valley, Western Himalaya are selected for the study. Volume equations, destructive sampling and laboratory analysis are done to estimate the carbon stock in different carbon pools like trees, shrubs, herbs and soils. Considerable variations are observed in terms of carbon stocks in different forest types. In Dry Shiwalik Sal Forest, carbon stock density varied between 129.81 and $136.00MgCha^{-1}$ while in Moist Shiwalik Sal Forest, carbon stock density ranged from 222.29 to $271.67MgCha^{-1}$. Tree species like Shorea robusta, Syzigium cumini, Miliusa velutina, Acacia catechu, and Mallotus philippensis had significant role in carbon sequestration. Shorea robusta had contributed highest in carbon stock due to highest density. Total of 2,338,280.165 Mg carbon stock was estimated in all the forest types.

Estimating the Changes in Forest Carbon Dynamics of Pinus densiflora and Quercus variabilis Forests in South Korea under the RCP 8.5 Climate Change Scenario (RCP 8.5 기후변화 시나리오에 따른 소나무림과 굴참나무림의 산림 탄소 동태 변화 추정 연구)

  • Lee, Jongyeol;Han, Seung Hyun;Kim, Seongjun;Chang, Hanna;Yi, Myong Jong;Park, Gwan Soo;Kim, Choonsig;Son, Yeong Mo;Kim, Raehyun;Son, Yowhan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.1
    • /
    • pp.35-44
    • /
    • 2015
  • Forests contain a huge amount of carbon (C) and climate change could affect forest C dynamics. This study was conducted to predict the C dynamics of Pinus densiflora and Quercus variabilis forests, which are the most dominant needleleaf and broadleaf forests in Korea, using the Korean Forest Soil Carbon (KFSC) model under the two climate change scenarios (2012-2100; Constant Temperature (CT) scenario and Representative Concentration Pathway (RCP) 8.5 scenario). To construct simulation unit, the forest land areas for those two species in the 5th National Forest Inventory (NFI) data were sorted by administrative district and stand age class. The C pools were initialized at 2012, and any disturbance was not considered during the simulation period. Although the forest C stocks of two species generally increased over time, the forest C stocks under the RCP 8.5 scenario were less than those stocks under the CT scenario. The C stocks of P. densiflora forests increased from 260.4 Tg C in 2012 to 395.3 (CT scenario) or 384.1 Tg C (RCP 8.5 scenario) in 2100. For Q. variabilis forests, the C stocks increased from 124.4 Tg C in 2012 to 219.5 (CT scenario) or 204.7 (RCP 8.5 scenario) Tg C in 2100. Compared to 5th NFI data, the initial value of C stocks in dead organic matter C pools seemed valid. Accordingly, the annual C sequestration rates of the two species over the simulation period under the RCP 8.5 scenario (65.8 and $164.2g\;C\;m^{-2}\;yr^{-1}$ for P. densiflora and Q. variabilis) were lower than those values under the CT scenario (71.1 and $193.5g\;C\;m^{-2}\;yr^{-1}$ for P. densiflora and Q. variabilis). We concluded that the C sequestration potential of P. densiflora and Q. variabilis forests could be decreased by climate change. Although there were uncertainties from parameters and model structure, this study could contribute to elucidating the C dynamics of South Korean forests in future.

Chronological Changes of Soil Organic Carbon from 2003 to 2010 in Korea

  • Kim, Yoo Hak;Kang, Seong Soo;Kong, Myung Suk;Kim, Myung Sook;Sonn, Yeon Kyu;Chae, Mi Jin;Lee, Chang Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.3
    • /
    • pp.205-212
    • /
    • 2014
  • Chronological changes of soil organic carbon (SOC) must be prepared by IPCC guidelines for national greenhouse gas inventories. IPCC suggested default reference SOC stocks for mineral soils and relative stock factors for different management activities where country own factors were not prepared. 3.4 million data were downloaded from agricultural soil information system and analyzed to get chronological changes of SOC for some counties and for land use in Korea. SOC content of orchard soil was higher than the other soils but chronological SOC changes of all land use had no tendency in differences with high standard deviation. SOC contents of counties depended on their own management activities and chronological SOC changes of districts also had no tendency in differences. Thus, Korea should survey the official records and relative stock factors on management activities such as land use, tillage and input of organic matter to calculate SOC stocks correctly. Otherwise, Korea should establish a model for predicting SOC by analyzing selected representative fields and by calculating SOC differences from comparing management activities of lands with those of representative fields.

Prediction of the Optimal Growth Site and Estimation of Carbon Stocks for Quercus acuta in Wando Area (완도지역의 붉가시나무 생육 적지예측 및 탄소저장량 추정)

  • Hwang, Jeong-Sun;Kang, Jin-Teak;Son, Yeong-Mo;Jeon, Hyun-Sun
    • Journal of Climate Change Research
    • /
    • v.6 no.4
    • /
    • pp.319-330
    • /
    • 2015
  • This study was carried out to predict the optimal growth site and estimate carbon stocks of Quercus acuta, evergreen broad-leaved trees in warm temperate zone according to climate change. The criterion for the optimal site prediction was created by quantification method with quantitative and qualitative data, collected from growth factors of stands and environmental factors of survey sites of 42 plots in Q. acuta by study relationship between growth of tree and site environmental factors. A program for the optimal site prediction was developed by using GIS engine tools. To prediction of the suitable growth site of Quercus acuta, developed program in this study applied to Wando in Jeollanam-do, distributing a various evergreen bread-leaved trees of warm temperate zone. In the results from analysis of the optimal site prediction on Q. acuta, the characteristics of the optimal site showed as follows; site environmental features of class I (the best site class for Q. acuta) was defined as 401 ~ 500 m of altitude, $21{\sim}25^{\circ}$ of slope with above hillside, residual of deposit convex of slope type with west of aspect. The area and carbon stocks of optimal site prediction by class for Q. acuta in classI showed 147.1 ha (2.5%), total 316.5 tC/ha, total $1,161tCO_2/ha/yr$ of class I, 2,703.5 ha (46.3%), total 5,817.4 tC/ha, total $21,331tCO_2/ha/yr$ of class II, 2,845.5 ha (48.6%), total 6,123.0 tC/ha, total $2,845.5tCO_2/ha/yr$ of class III and 153.7 ha (2.6%), total 330.7 tC/ha, total $1,213.7tCO_2/ha/yr$ of class IV.