Browse > Article
http://dx.doi.org/10.5532/KJAFM.2015.17.1.35

Estimating the Changes in Forest Carbon Dynamics of Pinus densiflora and Quercus variabilis Forests in South Korea under the RCP 8.5 Climate Change Scenario  

Lee, Jongyeol (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University)
Han, Seung Hyun (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University)
Kim, Seongjun (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University)
Chang, Hanna (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University)
Yi, Myong Jong (Department of Forest Resources, Kangwon National University)
Park, Gwan Soo (Department of Environment and Forest Resources, Chungnam National University)
Kim, Choonsig (Department of Forest Resources, Gyeongnam National University of Science and Technology)
Son, Yeong Mo (Department of Forest and Climate Change, Korea Forest Research Institute)
Kim, Raehyun (Department of Forest and Climate Change, Korea Forest Research Institute)
Son, Yowhan (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University)
Publication Information
Korean Journal of Agricultural and Forest Meteorology / v.17, no.1, 2015 , pp. 35-44 More about this Journal
Abstract
Forests contain a huge amount of carbon (C) and climate change could affect forest C dynamics. This study was conducted to predict the C dynamics of Pinus densiflora and Quercus variabilis forests, which are the most dominant needleleaf and broadleaf forests in Korea, using the Korean Forest Soil Carbon (KFSC) model under the two climate change scenarios (2012-2100; Constant Temperature (CT) scenario and Representative Concentration Pathway (RCP) 8.5 scenario). To construct simulation unit, the forest land areas for those two species in the 5th National Forest Inventory (NFI) data were sorted by administrative district and stand age class. The C pools were initialized at 2012, and any disturbance was not considered during the simulation period. Although the forest C stocks of two species generally increased over time, the forest C stocks under the RCP 8.5 scenario were less than those stocks under the CT scenario. The C stocks of P. densiflora forests increased from 260.4 Tg C in 2012 to 395.3 (CT scenario) or 384.1 Tg C (RCP 8.5 scenario) in 2100. For Q. variabilis forests, the C stocks increased from 124.4 Tg C in 2012 to 219.5 (CT scenario) or 204.7 (RCP 8.5 scenario) Tg C in 2100. Compared to 5th NFI data, the initial value of C stocks in dead organic matter C pools seemed valid. Accordingly, the annual C sequestration rates of the two species over the simulation period under the RCP 8.5 scenario (65.8 and $164.2g\;C\;m^{-2}\;yr^{-1}$ for P. densiflora and Q. variabilis) were lower than those values under the CT scenario (71.1 and $193.5g\;C\;m^{-2}\;yr^{-1}$ for P. densiflora and Q. variabilis). We concluded that the C sequestration potential of P. densiflora and Q. variabilis forests could be decreased by climate change. Although there were uncertainties from parameters and model structure, this study could contribute to elucidating the C dynamics of South Korean forests in future.
Keywords
Climate change scenario; KFSC model; Forest carbon; Carbon sequestration rate;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Hlasny, T., Z. Barcza, I. Barka, K. Merganieova, R. Sedmak, A. Kern, J. Pajtik, B. Balazs, M. Fabrika, and G. Churkina, 2014: Future carbon cycle in mountain spruce forests of Central Europe: modelling framework and ecological inferences. Forest Ecology and Management 328(15), 55-68.   DOI
2 Hong, J., C. Shim, M. Lee, G. Baek, W. Song, S. Jeon, and Y. Park, 2011: Net primary production changes over Korea and climate factors. Korean Journal of Remote Sensing 27(4), 467-480. (in Korean with English abstract)   DOI
3 Intergovernmental Panel on Climate Change (IPCC), 2007: Climate change 2007: synthesis report, Core Writing Team, R. K. Pachauri, and A. Reisinger (Eds.). IPCC, Geneva, Switzerland, 104pp.
4 Intergovernmental Panel on Climate Change (IPCC), 2014: 2013 Revised supplementary methods and good practice guidance arising from the Kyoto Protocol, K. N. Tanabe, Srivastava, J. Baasansuren, M. Fukuda, and T. Troxler (Eds.). IPCC, Geneva, Switzerland.
5 Ju, W. M., J. M. Chen, D. Harvey, and S. Wang, 2007: Future carbon balance of China's forests under climate change and increasing $CO_2$. Journal of Environmental Management 85(3), 328-562.
6 Kim, C., 2002: Mass loss rates and nutrient dynamics of decomposing fine roots in a sawtooth oak and Korean pine stands. Korean Journal of Ecology 25(4), 235-239.   DOI
7 Korea Forest Research Institute, 2010: Study on the basis of forest carbon accounting in Korea. Korea Forest Service, Daejeon, Korea, 436pp. (in Korean)
8 Korea Forest Research Institute, 2011: The 5th national forest inventory report. Korea Forest Research Institute, Korea, 166pp.
9 Korea Forest Research Institute, 2013: Development of greenhouse gas inventory system in forest sector of post-2012 climate regime. Korea Forest Service, Korea, 477pp. (in Korean).
10 Korea Forest Service, 2012: Table of tree volume/mass and yield table, Korea Forest Service, Korea, 261pp. (in Korean)
11 Krinner, G., N. Viovy, N. Noblet-Ducoudre, G. Ogee, J. Polcher, P. Friedlingstein, P. Ciais, S. Sitch, and I. C. Prentice, 2005: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles 19(1), 1-33.
12 Kurz, W. A., M. J. Apps, T. M. Webb, and P. J. McNamee, 1992: Carbon budget of the Canadian forest sector: phase I (inf. Rep. NOR-X-326). Northern Forestry Centre, Canada.
13 Kurz, W. A., C. C. Dymond, T. M. White, G. Stinson, C. H. Shaw, G. J. Rampley, C. Smyth, B. N. Simpson, E. T. Neilson, J. A. Trofymow, J. Metsaranta, and M. J. Apps, 2009: CBM-CFS3: a model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecological Modelling 220(4), 480-504.   DOI
14 Kwon, S.-S., S.-H. Choi, and S.-D. Lee, 2012: Estimation of spatial-temporal net primary productivity and soil carbon storage change in the capital area of South Korea under climate change. Environmental Impact Assessment 21(5), 757-765. (in Korean with English abstract)
15 Lee, A. R., N. J. Noh, T. K. Yoon, S. K. Lee, K. W. Seo, W.-K. Lee, Y. Cho, and Y. Son, 2009: Estimation of forest soil carbon stocks with Yasso using a dendrochronological approach. Journal of Korean Forest Society 98(6), 791-798. (in Korean with English abstract)
16 Lee, A. R., K. Yi, Y. Son, R. H. Kim, C. Kim, G. S. Park, K. H. Lee, and M. J. Yi, 2010: Approaches for developing a Korean model through analysis of overseas forest soil carbon models. Journal of Korean Forest Society 99(6), 791-801.
17 Liski, J., T. Palosou, M. Peltoniemi, and R. Sievanen, 2005: Carbon and decomposition model Yasso for forest soils. Ecological Modelling 189(1-2), 168-182.   DOI
18 Lee, J., T. K. Yoon, S. Han, S. Kim, M. J. Yi, G. S. Park, C. Kim, Y. M. Son, R. Kim, and Y. Son, 2014: Estimating the carbon dynamics of South Korean forests from 1954 to 2012. Biogeosciences 11(17), 4637-4650.   DOI
19 Li, X., M. J. Yi, Y. Son, G. Jin, and S. S. Han, 2010: Forest biomass carbon accumulation in Korea from 1954 to 2007. Scandinavian Journal of Forest Research 25(6), 554-563.   DOI
20 Lieth, H., 1975: Modeling the primary productivity of the world. Primary productivity of the Biosphere, Springer Berlin Heidelberg, 237-263.
21 Lutzow, M., and I. Kogel-Knabner, 2009: Temperature sensitivity of soil organic matter decomposition--what do we know?. Biology and Fertility of Soils 46(1), 1-15.   DOI
22 McMahon, S. M., G. G. Parker, and D. R. Miller, 2010: Evidence for a recent increase in forest growth. Proceedings of the National Academy of Sciences 107(8), 3611-3615.   DOI
23 Noh, N. J., Y. Son, S. K. Lee, T. K. Yoon, K. W. Seo, C. Kim, W. K. Lee, S. W. Bae, and J. H. Hwang, 2010: Influence of stand density on soil $CO_2$ efflux for a Pinus densiflora forest in Korea. Journal of Plant Research 123(4), 411-419.   DOI
24 Noh, N. J., 2011: Carbon and nitrogen dynamics in a natural Pinus densiflora forest with different stand densities. Ph.D. Dissertation. Korea University.
25 Park, G. S., G. N. Kang, S. J. Lee, H. G. Lee, S. Y. Lee, H. M. Chae, and S. Ohga, 2010: Net fine root carbon production in Pinus densiflora, Pinus koraiensis, Larix leptolepis and Quercus acutissima stands, Gongju area, Chungnam province, Korea. Journal of the Faculty of Agriculture, Kyushu University 55(1), 73-76.
26 Pan, Y., R. A. Birdsey, J. Fang, R. Houghton, P. E. Kauppi, W. A. Kurz, O. L. Phillips, A. Shvidenko, S. L. Lewis, J. G. Canadell, P. Ciais, R. B. Jackson, S. W. Pacala, A. D. McGuire, S. Piao, A. Rautiainen, S. Sitch, and D. Hayes, 2011: A large and persistent carbon sink in the world's forests. Science 333(6045), 988-993.   DOI   ScienceOn
27 Park, C. W., J. Lee, M. Yi, C. Kim, G. S. Park, R. H. Kim, K. H. Lee, and Y. Son, 2013: Estimation of change in soil carbon stock of Pinus densiflora forests in Korea using KFSC model under RCP 8.5 climate change scenario. Climate Change Research 4(2), 77-93. (in Korean with English abstract)
28 Park, G. S., J. G. Lim, D. H. Kim, and S. Ohga, 2006: Net fine root carbon production in Quercus natural forest ecosystems of Korea. Journal of the Faculty of Agriculture, Kyushu University 51(1), 57-61.
29 Peltoniemi, M., T. Palosou, S. Monni, and R. Makipaa, 2006: Factors affecting the uncertainty of sinks and stocks of carbon in Finnish forests soils and vegetation. Forest Ecology and Management 232(1), 75-85.   DOI
30 Shanin, V. N., A. S. Komarov, A. V. Mikhailov, and S. S. Bykhovets, 2011: Modelling carbon and nitrogen dynamics in forest ecosystems of Central Russia under different climate change scenarios and forest management regimes. Ecological Modelling 222(14), 2262-2275.   DOI
31 Shin, J. Y., M. S. Won, K. Kim, and M. Y. Shin, 2013: Predicting the effect of climate change on forest biomass by different ecoprovinces and forest types in Korea. Korean Journal of Agricultural and Forest Meteorology 15(3), 119-129. (in Korean with English abstract)   DOI
32 Yoon, T. K., H. Chung, R.-H. Kim, N. J. Noh, K. W. Seo, S. K. Lee, W. Jo, and Y. Son, 2011: Coarse woody debris mass dynamics in temperate natural forests of Mt. Jumbong, Korea. Journal of Ecology and Field Biology 34(1), 115-125.   DOI
33 Sitch, S., B. Smith, I. C. Prentice, A. Arneth, A. Bondeau, W. Cramer, J. O. Kaplan, S. Levis, W. Lucht, M. T. Sykes, K. Thonicke, and S. Venevsky, 2003: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology 9(2), 161-185.   DOI
34 Yi, K., C. W. Park, S. R. Ryu, K. H. Lee, M. J. Yi, C. Kim, G. S. Park, R. Kim, and Y. Son, 2013: Simulating the soil carbon dynamics of Pinus densiflora forests in central Korea. Scandinavian Journal of Forest Research 28(3), 241-256.   DOI
35 Yoo, S., D. A. Kwak, G. Cui, W.-K. Lee, H. Kwak, A. Ito, Y. Son, and S. Jeon, 2013: Estimation of the ecosystem carbon budget in South Korea between 1999 and 2008. Ecological Research 28(6), 1045-1059.   DOI
36 Davi, H., E. Dufrene, C. Francois, G. L. Maire, D. Loustau, A. Bosc, S. Rambal, A. Granier, and E. Moors, 2006: Sensitivity of water and carbon fluxes to climate changes from 1960 to 2100 in European forest ecosystems. Agricultural and Forest Meteorology 141(1), 35-56.   DOI
37 Chen, W., J. Chen, J. Liu, and J. Cihlar, 2000: Approaches for reducing uncertainties in regional forest carbon balance. Global Biogeochemical Cycles 14(3), 827-838.   DOI
38 Choi, S., W.-K. Lee, H. B. Kawk, and S. Kim, 2009: Predicting the vegetation distribution and terrestrial carbon-fluxes using MC1 model. ESRI User Conference Proceeding, 1-8.
39 Cramer, W., A. Bondeau, F. I. Woodward, I. C. Prentice, R. A. Betts, V. Brovkin, P. M. Cox, V. Fisher, J. A. Foley, A. D. Friend, C. Kucharik, M. R. Lomas, N. Ramankutty, S. Sitch, B. Smith, A. White, and C. Young-Molling, 2001: Global response of terrestrial ecosystem structure and function to $CO_2$ and climate change: results from six dynamic global vegetation models. Global Change Biology 7(4), 357-373.   DOI
40 Cui, G., W.-K. Lee, D. Kim, E. J. Lee, H. Kwak, H.-A. Choi, D.-A. Kwak, S. Jeon, and W. Zhu, 2014: Estimation of forest carbon budget from land cover change in South and North Korea between 1981 and 2010. Journal of Plant Biology 57(4), 225-238.   DOI
41 Davidson, E. A., and I. A. Janssens, 2006: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081), 165-173.   DOI
42 Dixon, R. K., A. M. Solomon, S. Brown, R. A. Houghton, M. C. Trexier, and J. Wisniewski, 1994: Carbon pools and flux of global forest ecosystems. Science 263(5144), 185-190.   DOI   ScienceOn
43 Gower, S. T., R. E. McMurtrie, and D. Murty, 1996: Aboveground net primary production decline with stand age: potential causes. Trends in Ecology and Evolution 11(9), 378-382.   DOI
44 Grosso, S. D., W, Parton, T., Stohlgren, D. Zheng, D. Bachlet, S. Prince, K. Hibbard, and R. Olson, 2008: Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology 89(8), 2117-2126.   DOI