• 제목/요약/키워드: Carbon powder

검색결과 985건 처리시간 0.033초

Change of Percolation Threshold in Carbon Powder-Filled Polystyrene Matrix Composites

  • Shin, Soon-Gi
    • 한국재료학회지
    • /
    • 제25권3호
    • /
    • pp.119-124
    • /
    • 2015
  • This paper investigates the change of the percolation threshold in the carbon powder-filled polystyrene matrix composites based on the experimental results of changes in the resistivity and relative permittivity of the carbon powder filling, the electric field dependence of the current, and the critical exponent of conductivity. In this research, the percolation behavior, the critical exponent of resistivity, and electrical conduction mechanism of the carbon powder-filled polystyrene matrix composites are discussed based on a study of the overall change in the resistivity. It was found that the formation of infinite clusters is interrupted by a tunneling gap in the volume fraction of the carbon powder filling, where the change in the resistivity is extremely large. In addition, it was found that the critical exponent of conductivity for the universal law of conductivity is satisfied if the percolation threshold is estimated at the volume fraction of carbon powder where non-ohmic current behavior becomes ohmic. It was considered that the mechanism for changing the gaps between the carbon powder aggregates into ohmic contacts is identical to that of the connecting conducting phases above the percolation threshold in a random resister network system. The electric field dependence is discussed with a tunneling mechanism. It is concluded that the percolation threshold should be defined at this volume fraction (the second transition of resistivity for the carbon powder-filled polystyrene matrix composites) of carbon powder.

Dependency of the Critical Carbon Content of Electrical Conductivity for Carbon Powder-Filled Polymer Matrix Composites

  • Shin, Soon-Gi
    • 한국재료학회지
    • /
    • 제25권8호
    • /
    • pp.365-369
    • /
    • 2015
  • This paper investigates the dependency of the critical content for electrical conductivity of carbon powder-filled polymer matrix composites with different matrixes as a function of the carbon powder content (volume fraction) to find the break point of the relationships between the carbon powder content and the electrical conductivity. The electrical conductivity jumps by as much as ten orders of magnitude at the break point. The critical carbon powder content corresponding to the break point in electrical conductivity varies according to the matrix species and tends to increase with an increase in the surface tension of the matrix. In order to explain the dependency of the critical carbon content on the matrix species, a simple equation (${V_c}^*=[1+ 3({{\gamma}_c}^{1/2}-{{\gamma}_m}^{1/2})^2/({\Delta}q_cR]^{-1}$) was derived under some assumptions, the most important of which was that when the interfacial excess energy introduced by particles of carbon powder into the matrix reaches a universal value (${\Delta}q_c$), the particles of carbon powder begin to coagulate so as to avoid any further increase in the energy and to form networks that facilitate electrical conduction. The equation well explains the dependency through surface tension, surface tensions between the particles of carbon powder.

A Separator with Activated Carbon Powder Layer to Enhance the Performance of Lithium-Sulfur Batteries

  • Vu, Duc-Luong;Lee, Jae-Won
    • 한국분말재료학회지
    • /
    • 제25권6호
    • /
    • pp.466-474
    • /
    • 2018
  • The high theoretical energy density ($2600Wh\;kg^{-1}$) of Lithium-sulfur batteries and the high theoretical capacity of elemental sulfur ($1672mAh\;g^{-1}$) attract significant research attention. However, the poor electrical conductivity of sulfur and the polysulfide shuttle effect are chronic problems resulting in low sulfur utilization and poor cycling stability. In this study, we address these problems by coating a polyethylene separator with a layer of activated carbon powder. A lithium-sulfur cell containing the activated carbon powder-coated separator exhibits an initial specific discharge capacity of $1400mAh\;g^{-1}$ at 0.1 C, and retains 63% of the initial capacity after 100 cycles at 0.2 C, whereas the equivalent cell with a bare separator exhibits a $1200mAh\;g^{-1}$ initial specific discharge capacity, and 50% capacity retention under the same conditions. The activated carbon powder-coated separator also enhances the rate capability. These results indicate that the microstructure of the activated carbon powder layer provides space for the sulfur redox reaction and facilitates fast electron transport. Concurrently, the activated carbon powder layer traps and reutilizes any polysulfides dissolved in the electrolyte. The approach presented here provides insights for overcoming the problems associated with lithium-sulfur batteries and promoting their practical use.

Sliding Friction and Wear Behavior of C/C Composites Against 40 Cr Steel

  • Ge, Yicheng;Yi, Maozhong;Xu, Huijuan;Peng, Ke;Yang, Lin
    • Carbon letters
    • /
    • 제10권2호
    • /
    • pp.97-100
    • /
    • 2009
  • In this work, effects of carbon matrix on sliding friction and wear behavior of four kinds of C/C have been investigated against 40 Cr steel ring mate. Composite A with rough lamination carbon matrix (RL) shows the highest volume loss and coefficient of friction, while composite D with smooth lamination/resin carbon matrix (SL/RC) shows the lowest volume loss. The worn surface of composite A appears smooth, whereas that of composite C with smooth lamination carbon (SL) appears rough. The worn surface of composite D appears smooth under low load but rough under high load. Atomic force microscope images show that the size of wear particles on the worn surface is also dependent on the carbon matrix.

저탄소 그린콘크리트의 물리·역학적 특성 (Physical and Mechanical Properties of Low Carbon Green Concrete)

  • 조일호;성찬용
    • 한국농공학회논문집
    • /
    • 제55권3호
    • /
    • pp.123-128
    • /
    • 2013
  • This study was performed to evaluate the slump flow, air content, setting time, compressive strength, adiabatic temperature rise and diffusion coefficient of chloride used ordinary portland cement, crushed coarse aggregate, crushed sand, river sand, fly ash, limestone powder, blast furnace slag powder and superplasticizer to find optimum mix design of low carbon green concrete for structures. The performances of low carbon green concrete used fly ash, limestone powder and blast furnace slag powder were remarkably improved. This fact is expected to have economical effects in the manufacture of low carbon green concrete for structures. Accordingly, the fly ash, limestone powder and blast furnace slag powder can be used for low carbon green concrete material.

탄소 나노 물질의 형상에 따른 구리/탄소나노물질 하이브리드 필러의 전도성 향상 거동 분석 (Effects of Morphologies of Carbon Nanomaterials on Conductivity of Composites Containing Copper/Carbon Nanomaterial Hybrid Fillers)

  • 이연주;홍성욱;최현주
    • 한국분말재료학회지
    • /
    • 제25권5호
    • /
    • pp.435-440
    • /
    • 2018
  • In the present study, we develop a conductive copper/carbon nanomaterial additive and investigate the effects of the morphologies of the carbon nanomaterials on the conductivities of composites containing the additive. The conductive additive is prepared by mechanically milling copper powder with carbon nanomaterials, namely, multi-walled carbon nanotubes (MWCNTs) and/or few-layer graphene (FLG). During the milling process, the carbon nanomaterials are partially embedded in the surfaces of the copper powder, such that electrically conductive pathways are formed when the powder is used in an epoxy-based composite. The conductivities of the composites increase with the volume of the carbon nanomaterial. For a constant volume of carbon nanomaterial, the FLG is observed to provide more conducting pathways than the MWCNTs, although the optimum conductivity is obtained when a mixture of FLG and MWCNTs is used.

수중 과염소산염(Perchlorate) 제거를 위한 맞춤 분말활성탄 제조 (Manufacturing Tailored Powder Activated Carbon for Removing Perchlorate in Water)

  • 김상구;송미정;최근주;유평종;김신철;이용두
    • 대한환경공학회지
    • /
    • 제30권6호
    • /
    • pp.637-641
    • /
    • 2008
  • 이 연구는 과염소산염 제거를 위하여 정수처리장에서 적용 가능한 맞춤분말활성탄 제조와 활성탄 종류에 따른 제거효율 은 비교하기 위하여 수행하였다. Cetyltrimethylammoniumchloride(CTAC)를 이용하여 활성탄에 흡착 전처리하면 과염소산염을 효과적으로 제거 할 수 있었다. 10,000 mg/L 맞춤분활성탄은 농도 5,000 mg/L CTAC 용액 500 mL에 5 g의 분말활성탄을 혼합하여 제조하였다. 맞춤분말활성탄을 이용하면 일반 분말활성탄에 비해 10 이상 높은 과염소산염 제거가 가능하였다. 맞춤 분말활성탄을 이용하여 과염소산염 제거 시 초기 접촉시간 15분은 접촉시간에 따라 잔류 과염소산염의 농도가 줄어들었으나 15분 이후에는 잔류농도의 변화가 거의 없었다. 맞춤분말활성탄 조제 시 활성탄의 요오드가에 따라서 과염소산염 제거능이 달랐는데 요오드가 1,083 mg/g 활성탄은 요오드가 944 mg/g 활성탄에 비해 4배 이상 높은 과염소산염 제거능을 보였다. 일반적으로 정수장에서 주입 가능한 분말활성탄 농도인 5 mg/L 범위의 맞춤분말활성탄 주입농도에서 50 $\mu$g/L의 과염소산염 농도를 15 $\mu$g/L까지 저감 가능하였다.

Development of Carbon Nanotubes and Polymer Composites Therefrom

  • Jain, P.K.;Mahajan, Y.R.;Sundararajan, G.;Okotrub, A.V.;Yudanov, N.F.;Romanenko, A.I.
    • Carbon letters
    • /
    • 제3권3호
    • /
    • pp.142-145
    • /
    • 2002
  • Multiwall carbon nanotubes (MWNT) were produced using the arc-discharge graphite evaporation technique. Composite films were developed using MWNT dispersed in polystirol polymer. In the present work, various properties of the polymeric thin film containing carbon nanotubes were investigated by optical absorption, electrical resistivity and the same have been discussed.

  • PDF

자기진단 FRP의 도전기구 해석 (Analysis of conductive mechanism on self-diagnosis FRP)

  • 임현주;이학용;신순기;이준희
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.27-30
    • /
    • 2003
  • In order to apply fracture detection we fabricated the CP-FRP using carbon-powder and analyzed conductive mechanism of it. The composites showed lower initial resistance as the carbon powder and amount of glass fiber(TEX) was used much more. When those are compared with each other that before and after bending test, the more cracks observed in matrix after bending test. We become to know that the conductivity of the composites depends on percolation structure of carbon powder.

  • PDF

Effect of nano-carbon addition on color performance of polystyrene superstructure film

  • ZHOU, Ye-min;Wang, Li-li;LI, Xiao-peng;Wang, Xiu-feng;Jiang, Hong-tao
    • Journal of Ceramic Processing Research
    • /
    • 제19권6호
    • /
    • pp.479-482
    • /
    • 2018
  • Polystyrene superstructure films show faint rainbow color, and this low color saturation limits its wide application. In this paper, polystyrene superstructure films with single bright blue color were prepared by vertical deposition self-assembly method using polystyrene microspheres with average diameter of $310{\pm}10nm$ as raw material. Polystyrene superstructure films were modified by adding nano-carbon powder, and effect of the amount of nano-carbon powde on color performance was studied. The results showed that without addition of nano-carbon powder, the superstructure films showed a faint rainbow color, while with addition of nano-carbon power, the superstructure films exhibited a single bright blue under the same natural light source. Changing the amount of nano-carbon powder addition could adjust color saturation of the film. With increasing the amount of nano-carbon powder addition from 0.008 wt% to 0.01 wt%, color saturation of the superstructure film increased gradually. Further increasing the amount of nano-carbon powder addition to 0.011wt%, color saturation of the superstructure film didn't increase anymore and tended to get dark.