• 제목/요약/키워드: Carbon nanotube (CNT) paper

검색결과 135건 처리시간 0.031초

Arbitrary Cutting of a single CNT tip in Nanogripper using Electrochemical Etching

  • Lee Junsok;Kwak Yoonkeun;Kim Soohyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권2호
    • /
    • pp.46-49
    • /
    • 2005
  • Recently, many research results have been reported about nano-tip using carbon nanotube because of its better sensing ability compared to a conventional silicon tip. However, it is very difficult to identify the carbon nanotube having proper length for nano-tip and to attach it on a conventional tip. In this paper, a new method is proposed to make a nano-tip and to control its length. The electrochemical etching method was used to control the length by cutting the carbon nanotube of arbitrary length and it was possible to monitor the process through current measurement. The etched volume of carbon nanotube was determined by the amount of applied charge. The carbon nanotube was successfully cut and could be used in the nanogripper.

나노 트위져의 구동 전압에 관한 연구 (A Study on the Actuating Voltage of a Nanotweezer)

  • 이준석;최재성;강경수;곽윤근;김수현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.986-990
    • /
    • 2004
  • In this paper, we propose a method to estimate the actuating voltage of the nanotweezer made by manual assembly using carbon nanotube. The nanotweezer is composed of two CNT arms that are made by the multiwalled carbon nanotube and tungsten tip. Since the each CNT arm has the macro actuator, the nanotweezer can manipulate a large particle and it is possible to close and open the CNT arm repeatedly. The closing voltage, i.e., actuating voltage is calculated using the capacitance between the carbon nanotubes in CNT arm. We demonstrate the actuation of the nanotweezer using the voltage calculated with the electrostatic force.

  • PDF

탄소나노튜브 가용체 초소형 퓨즈의 한계 전류 특성 (Limited Current Characteristics of Carbon Nanotube Elements Miniature Fuses)

  • 노성여;진상준;이선우
    • 한국전기전자재료학회논문지
    • /
    • 제33권1호
    • /
    • pp.45-49
    • /
    • 2020
  • In this paper, we prepared miniature fuse fabricated with carbon nanotube (CNT) fiber for the use of low rated current under 1 A and high speed operation under 4ms. CNT fuses were fabricated in the form of universal modular fuse (UMF) with different diameter of CNT fibers defined by multiplying the CNT threads. Electrical properties of the CNT fuses were measured such as resistance, rated current, and operation time with current. Resistance of the CNT fuse decreased and rated current increased with the diameter of the CNT fuses, respectively. Consequently, the operation time with current increased with the diameter of the CNT fuses. The CNT fuses fabricated in this work had broad range of low rated current from 0.05 to 1.25 A by multiplying the CNT threads. Operation time was measured about 3.6ms which was applicable to the UMF.

전력케이블에서 탄소나노튜브 함량에 따른 반도전층 재료의 특성 연구 (A Study on the Properties of Semiconducting Materials with contents of Carbon Nanotube in Power Cable)

  • 양종석;신동훈;이경용;박대희
    • 전기학회논문지
    • /
    • 제56권3호
    • /
    • pp.571-576
    • /
    • 2007
  • In this paper, we have investigated chemical, mechanical and structural properties by changing the content of carbon nanotube, Which is a component part of semiconductive shield in underground power transmission cable. The multi luminescence spectrometer MLA-GOLDS was used to investigate chemical properties of specimens. Also, the density meter EW-200SG was used to investigate the mechanical properties of specimens, and the FE-SEM S-4300 in Hitachi was used for dispersion of CNT(Carbon nanotube). As a result, the cl intensity, which show the effect of oxidation, was decreased by CNT of 1 [wt%], and the density of semiconductive shield materials with CNT and EEA(Ethylene Ethyl Acrylate) is lower than that for commercial semiconductive shield materials. Also, the properties of dispersion showed an increase according to an increase in the ratio of CNT, and the properties were the best at 5 wt%. Therefore, excellent chemical, mechanical and structural properties can be improved with the small amount of CNT.

주사탐침현미경용 카본나노튜브 팁의 조립 조건 실험 (An Experiment about Assembling Condition of Carbon Nanotube Tip for AFM)

  • 박준기;한창수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.501-504
    • /
    • 2004
  • This paper describes the fabrication method for atomic force microscopy(AFM) tip with multi-walled carbon nanotube(MWNT). For making a carbon nanotube (CNT) modified tips, AC electric field which cause the dielectrophoresis was used for alignment and deposition of CNTs in this research. By dropping the MWNT solution and applying an electric field between an AFM tip and an electrode, MWNTs which were dispersed into a diluted solution were directly assembled onto the apex of the AFM tips due to the attraction by the dielectrophoretic force. In this case, we investigate the effect of the angle between a tip axis and an electrode. Experimental setup were presented, and then CNT attached AFM tips are successfully shown in this paper.

  • PDF

나노트위져 제작을 위한 탄소나노튜브 샘플 (A Carbon Nanotube Sample for the Fabrication of Nanotweezer)

  • 최재성;이준석;강경수;곽윤근;김수현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.997-1000
    • /
    • 2004
  • This paper introduces our basic research about a carbon nanotube(CNT) sample for the fabrication of nanotweezer. We have made the nanotweezer through the physical adhesion of multi-walled carbon nanotubes(MWCNTs) on two sharp tungsten tips. Thereby we needed the CNT sample which is proper to this fabrication process. And we applied the dielectrophoretic methods to the fabrication of the CNT sample. During the basic experiment, we used a sharp edged electrode and a flat electrode as electrodes for dielectrophoresis and just a function generator as a voltage source for the generation of electric field.

  • PDF

The Electronic Structure of Carbon Nanotubes with Finite Length : Tight Binding Theory

  • Moon, Won-Ha;Kim, Won-Woo;Hwang, Ho-Jung
    • Transactions on Electrical and Electronic Materials
    • /
    • 제3권1호
    • /
    • pp.23-29
    • /
    • 2002
  • The electronic properties of Carbon Nanotube(CNT) are currently the focus of considerable interest. In this paper, the electronic properties of finite length effect in CNT for the carbon nano-scale device is presented. To Calculate the electronic properties of CNT, Empirical potential method (the extended Brenner potential for C-Si-H) for carbon and Tight Binding molecular dynamic (TBMD) simulation are used. As a result of study, we have known that the value of the band gap decreases with increasing the length of the tube. The energy band gap of (6,6) armchair CNT have the ranges between 0.3 eV and 2.5 eV. Also, our results are in agreements with the result of the other computational techniques.

SPM 용 카본 나노튜브 팁 조립의 실험적 연구 (Experimental study of assembly of the carbon nanotube tip for SPM)

  • 박준기;김지은;한창수;박영근;황규호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1228-1231
    • /
    • 2005
  • This paper reports about the development of scanning probe microscopy (SPM) tip with multi-walled carbon nanotube (MWNT). For making a carbon nanotube (CNT) modified tips, AC electric field which causes the dielectrophoresis was used for alignment and deposition of CNTs to the metal coated SPM tip. By dropping the MWNT solution and applying an electric field between an SPM tip and an electrode, MWNTs which were dispersed into a diluted solution were directly assembled onto the apex of the SPM tips due to the attraction by the dielectrophoretic force. In this paper, we investigate experimental conditions about the alignment of the CNT to tip axis according to the change of the angle between a tip and an electrode. Experimental results are presented, and then fabricated CNT tips are showed and measurement results for 15nm gold particles are compared with that of the conventional silicon tip.

  • PDF

Thermo-mechanical analysis of carbon nanotube-reinforced composite sandwich beams

  • Ebrahimi, Farzad;Farazamandnia, Navid
    • Coupled systems mechanics
    • /
    • 제6권2호
    • /
    • pp.207-227
    • /
    • 2017
  • In this paper Timoshenko beam theory is employed to investigate the vibration characteristics of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) Beams with a stiff core in thermal environment. The material characteristic of carbon nanotubes (CNT) are supposed to change in the thickness direction in a functionally graded form. They can also be calculated through a micromechanical model where the CNT efficiency parameter is determined by matching the elastic modulus of CNTRCs calculated from the rule of mixture with those gained from the molecular dynamics simulations. The differential transform method (DTM) which is established upon the Taylor series expansion is one of the effective mathematical techniques employed to the differential governing equations of sandwich beams. Effects of carbon nanotube volume fraction, slenderness ratio, core-to-face sheet thickness ratio, different thermal environment and various boundary conditions on the free vibration characteristics of FG-CNTRC sandwich beams are studied. It is observed that vibration response of FG-CNTRC sandwich beams is prominently influenced by these parameters.

Carbon nanotube/silicon hybrid heterojunctions for photovoltaic devices

  • Castrucci, Paola
    • Advances in nano research
    • /
    • 제2권1호
    • /
    • pp.23-56
    • /
    • 2014
  • The significant growth of the Si photovoltaic industry has been so far limited due to the high cost of the Si photovoltaic system. In this regard, the most expensive factors are the intrinsic cost of silicon material and the Si solar cell fabrication processes. Conventional Si solar cells have p-n junctions inside for an efficient extraction of light-generated charge carriers. However, the p-n junction is normally formed through very expensive processes requiring very high temperature (${\sim}1000^{\circ}C$). Therefore, several systems are currently under study to form heterojunctions at low temperatures. Among them, carbon nanotube (CNT)/Si hybrid solar cells are very promising, with power conversion efficiency up to 15%. In these cells, the p-type Si layer is replaced by a semitransparent CNT film deposited at room temperature on the n-doped Si wafer, thus giving rise to an overall reduction of the total Si thickness and to the fabrication of a device with cheaper methods at low temperatures. In particular, the CNT film coating the Si wafer acts as a conductive electrode for charge carrier collection and establishes a built-in voltage for separating photocarriers. Moreover, due to the CNT film optical semitransparency, most of the incoming light is absorbed in Si; thus the efficiency of the CNT/Si device is in principle comparable to that of a conventional Si one. In this paper an overview of several factors at the basis of this device operation and of the suggested improvements to its architecture is given. In addition, still open physical/technological issues are also addressed.