• Title/Summary/Keyword: Carbon nanotube (CNT)

Search Result 761, Processing Time 0.025 seconds

Fabrication of Triode-Type CNT-FED by A Screen-printing of CNT Paste

  • Kwon, Sang-Jik;Shon, Byeong-Kyoo;Chung, Hak-June;Lee, Sang-Heon;Choi, Hyung-Wook;Lee, Jong-Duk;Lee, Chun-Gyoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.866-869
    • /
    • 2004
  • A carbon nanotube field emission display(CNT FED) panel with a 2 inch diagonal size was fabricated by using a screen printing of a prepared photo-sensitive CNT paste and vacuum in-line sealing technology. After a surface treatment of the patterned CNT, only the carbon nanotube tips are uniformly exposed on the surface. The diameter of the exposed CNTs are usually about 20nm. The sealing temperature of the panel was around 390 $^{\circ}C$ and the vacuum level was obtained with $1.4{\times}10^{-5}$torr at the sealing. The field emission properties of the diode type CNT FED panel were characterized Now, we are developing a triode type CNT FED with a self-aligned gate-emitter structure.

  • PDF

Effect of Nano-Sized Silver Powders in CNT Paste on Field Emission Characteristics of Carbon Nanotube Cathode (탄소나노튜브 캐소드의 전계방출 특성에 미치는 CNT 페이스트용 나노입자 은분말의 영향)

  • An, Young-Je;Lee, Ji-Eon;Shin, Heon-Cheol;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.18 no.1
    • /
    • pp.12-17
    • /
    • 2008
  • Carbon nanotube (CNT) cathodes were fabricated using nano-sized silver (Ag) powders as a bonding material between the CNTs and cathode electrodes. The effects of the powder size on the sintering behavior, the current density and emission image for CNT cathodes were investigated. As the diameter of the Ag powders decreases to 10 nm, the sintering temperature of the CNT cathode was lowered primarily due to the higher specific surface area of the Ag powders. In this study, it was demonstrated that nano-sized Ag powders can be feasibly used as a bonding material for a screen-printed CNT cathode, yielding a high current density and a uniform emission image.

Evaluation of Adhesion and Electrical Properties of CNT/PU Topcoat with Different CNT Weight Fraction for Aircraft (탄소나노튜브의 함량에 따른 항공기용 탄소나노튜브/폴리우레탄 탑코트의 접착 및 전기적 특성 평가)

  • Kim, Jong-Hyun;Shin, Pyeong-Su;Kim, So-Yeon;Park, Joung-Man
    • Composites Research
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Dispersion and electrical resistance (ER) properties of polyurethane (PU) type topcoat were evaluated using carbon nanotube (CNT) with different CNT weight fraction. CNT was dispersed in PU type topcoat using ultra sonication dispersion method. CNT/PU topcoat was coated on carbon fiber reinforced epoxy composite (CFRC) surface using gravity feed spraying method. Static contact angles of CFRC and CNT/PU topcoat were performed using 4 types of solvents to calculate the work of adhesion between CNT/PU topcoat and CFRC surface. Surface resistance of CNT added PU topcoat was measured to determine CNT dispersion. Adhesion property between CNT/PU topcoat and CFRC was determined via cross hatch cutting test based on ASTM D3359. The optimized condition of CNT weight fraction was found.

Liquid electrochemical sensors using carbon nanotube film (Carbon Nanotube Film을 이용한 액체 전기화학 센서)

  • Noh, Jaeha;An, Sangsu;Lee, Changhan;Lee, Sangtae;Lee, Moonjin;Seo, Dongmin;Chang, Jiho
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.255-260
    • /
    • 2021
  • We studied electrochemical sensors using printed carbon nanotube (CNT) film on a polyethylene terephthalate (PET) substrate. Multiwalled CNT films were printed on a PET substrate to study its feasibility as hazardous and noxious substances (HNS) detection sensor. The printed CNT film (PCF) with a 50 ㎛ thickness exhibited a specific resistance of 230 ohm. To determine the optimum sensor structure, a resistance-type PCF sensor (R-type PCF sensor) and a conductive-type PCF sensor (C-type PCF sensor) were fabricated and compared using diluted NH3 droplets with various concentrations. The response magnitude, response time, sensitivity, linearity, and limit of detection (LOD) were compared, and it was concluded that the C-type PCF sensor exhibited superior performance. By applying a C-Type PCF sensor, we confirmed the detection performance of 12 types of floating HNS and the response of the sensor with selectivity according to the degree of polarity.

Self-Sensing of Single Carbon Fiber/Carbon Nanotube-Epoxy Composites Using Electro-Micromechanical Techniques and Acoustic Emission (전기적-미세역학시험법과 음향방출을 이용한 단일 탄소섬유/탄소나노튜브-에폭시 나노복합재료의 자체-감지능)

  • Park, Joung-Man;Jang, Jung-Hoon;Wang, Zuo-Jia;Kwon, Dong-Jun;Park, Jong-Kyu;Lee, Woo-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.411-422
    • /
    • 2010
  • Self-sensing on micro-failure, dispersion degree and relating properties, of carbon nanotube(CNT)/epoxy composites, were investigated using wettability, electro-micromechanical technique with acoustic emission(AE). Specimens were prepared from neat epoxy as well as composites with untreated and acid-treated CNT. Degree of dispersion was evaluated comparatively by measuring volumetric electrical resistivity and its standard deviation. Apparent modulus containing the stress transfer was higher for acid-treated CNT composite than for the untreated case. Applied cyclic loading responded well for a single carbon fiber/CNT-epoxy composite by the change in contact resistivity. The interfacial shear strength between a single carbon fiber and CNT-epoxy, determined in a fiber pullout test, was lower than that between a single carbon fiber and neat epoxy. Regarding on micro-damage sensing using electrical resistivity measurement with AE, the stepwise increment in electrical resistivity was observed for a single carbon fiber/CNT -epoxy composite. On the other hand, electrical resistivity increased infinitely right after the first carbon fiber breaks for a single carbon fiber/neat epoxy composite. The occurrence of AE events of added CNT composites was much higher than the neat epoxy case, due to micro failure at the interfaces by added CNTs.

Preparation and Characterization of Hybrid Ozone Resistance Coating Film Using Carbon Nanotube (탄소나노튜브를 이용한 하이브리드 내오존성 코팅 막의 제조 및 특성)

  • Kim, Sung Rae;Lee, Sang Goo;Yang, Jeong Min;Lee, Jong Dae
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.573-579
    • /
    • 2014
  • The effect of synthesis conditions such as carbon nanotube (CNT), 2,2,2-trifluoroethylmethacrylate (3FMA), and composition of organic-inorganic material in ozone resistance and surface characteristics of ultraviolet cured organic-inorganic hybrid coating film has been investigated. Coating solution was prepared using tetraethoxysilane (TEOS), silane coupling agent methacryloyloxypropyltrimethoxysilane (MPTMS), 3FMA, various organic materials with acrylate group, and CNT, then bar-coated on substrates using applicator, and densified by UV-curing. It was found that ozone resistance and adhesion of the coating film were strongly dependent upon contents of TEOS, 3FMA, and CNT. Especially, ozone resistance, adhesion, and surface hardness of coating film with CNT were improved, relatively. Ozone resistance of coating film with a high TEOS content was increased, but adhesion was decreased. In addition, it was also found that ozone resistance of coating film was increased with contents of 3FMA. On the other hand, surface hardness was decreased with increase of 3FMA.

Comparative Study of Physical Dispersion Method on Properties of Polystyrene/Multi-walled Carbon Nanotube Nanocomposites (폴리스티렌/다중벽 탄소나노튜브 나노복합재료의 물리적 분산 방법에 따른 물성)

  • Kang, Myung Hwan;Yeom, Hyo Yeol;Na, Hyo Yeol;Lee, Seong Jae
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.526-532
    • /
    • 2013
  • The effect of CNT dispersion method on rheological and electrical properties of polystyrene/carbon nanotube (PS/CNT) nanocomposites via latex technology was compared. The nanocomposites were prepared through freeze-drying the dispersed suspension comprised of CNTs and PS particles. In this study, physical dispersion method, either sodium dodecylsulfate (SDS) addition or polyvinyl pyrrolidone (PVP) wrapping, was employed to prevent the deterioration of intrinsic properties of CNT caused by chemical modification. The physical method applied to latex technology was very effective in CNT dispersion. With SDS addition, the enhancement of rheological properties was low compared to PVP wrapping because the properties of matrix were deteriorated due to the incorporation of low molecular weight SDS. The electrical percolation threshold of PS/SDS-stabilized CNT and PS/PVP-wrapped CNT nanocomposites was 0.23 and 0.90 wt%, respectively. The enhancement of electrical conductivity was low in the case of PVP wrapping because the non-conducting PVPs wrapped around CNT restricted the electrical connection between CNTs.

Comparison of Ablation Characteristics of Carbon Nanotube reinforced Hybrid Al2O3 by using Ultrashort Pulse Laser (순수 알루미나와 탄소나노튜브 강화 알루미나 복합체의 극초단 펄스레이저 가공특성 비교)

  • Lee, Jun-Young;Yoon, Ji-Wook;Kang, Myung-Chang;Cho, Sung-Hak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.23-29
    • /
    • 2013
  • In this paper, pure $I_{ph}$ and hybrid carbon nanotube reinforced $I_{ph}$ were sintered using the SPS(spark plasma sintering) method for high densification. A nanosecond laser (${\lambda}=1063nm$, ${\tau}P=10ns$) and a femtosecond laser (${\lambda}=1027nm$, ${\tau}P=380fs$) were installed on an optical system for the micromachining test. The ablation characteristics of the pure $I_{ph}$ and CNT/$I_{ph}$ composites, such as thermal effect and ablation depth, were investigated using FE-SEM and a confocal microscope device. Laser machining results for the two mating materials showed improved performances: CNT/$I_{ph}$ composites showed good surface morphology of hole drilling without a melting zone due to the composites' high thermal properties; also, the ablated depth of CNT/$I_{ph}$ was higher than that of pure $I_{ph}$.

A Carbon Nanotube Field Emitter with a Triode Configuration for a Miniature Mass Spectrometer (초소형 질량분석기를 위한 삼극관 구조의 탄소나노튜브 전자방출원)

  • Lee, Yu-Ri;Lee, Ki-Jung;Hong, Nguyen Tuan;Lee, Soon-Il;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1001-1006
    • /
    • 2012
  • This paper presents a carbon nanotube (CNT) triode-structure field emitter as an ion source in a micro time-of-flight mass spectrometer(TOF-MS). In the ion source by field emission, the electrons emitted from cathodes under an electric field accelerated to the anode and ionize gas molecules by impact before arriving the anode. The generated positive ions are to be accelerated to the ion collector. Whereas most of ions are drawn to the cathodes in diode field emitters, a grid in the triode field emitter prevents the ions from being drawn to the cathodes. The triode field emitter is fabricated by micromachining. The cathode is composed of six CNT cylinders. The total size of the fabricated device is $8.0{\times}7.3{\times}1.9mm^3$. The anode and the grid current of the fabricated CNT field emitter were measured for various anode and grid voltages. When the anode and the grid voltages are 1000 V and 990 V, respectively, the emission current passing through the ionization region is 8.6 ${\mu}A$, which is a sufficient emission current for ionization and mass spectrometry.

A novel free-standing anode of CuO nanorods in carbon nanotube webs for flexible lithium ion batteries

  • Lee, Sehyun;Song, Hyeonjun;Hwang, Jun Yeon;Kim, Seung Min;Jeong, Youngjin
    • Carbon letters
    • /
    • v.27
    • /
    • pp.98-107
    • /
    • 2018
  • Free-standing electrodes of CuO nanorods in carbon nanotubes (CNTs) are developed by synthesizing porous CuO nanorods throughout CNT webs. The electrochemical performance of the free-standing electrodes is evaluated for their use in flexible lithium ion batteries (LIBs). The electrodes comprising CuO@CNT nanocomposites (NCs) were characterized by charge-discharge testing, cyclic voltammetry, and impedance measurement. These structures are capable of accommodating a high number of lithium ions as well as increasing stability; thus, an increase of capacity in long-term cycling and a good rate capability is achieved. We demonstrate a simple process of fabricating free-standing electrodes of CuO@CNT NCs that can be utilized in flexible LIBs with high performance in terms of capacity and cycling stability.