DOI QR코드

DOI QR Code

탄소나노튜브의 함량에 따른 항공기용 탄소나노튜브/폴리우레탄 탑코트의 접착 및 전기적 특성 평가

Evaluation of Adhesion and Electrical Properties of CNT/PU Topcoat with Different CNT Weight Fraction for Aircraft

  • Kim, Jong-Hyun (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Shin, Pyeong-Su (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Kim, So-Yeon (School of Material Science and Engineering, Gyeongsang National University) ;
  • Park, Joung-Man (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University)
  • 투고 : 2019.10.08
  • 심사 : 2020.01.22
  • 발행 : 2020.02.29

초록

탄소나노튜브의 함량에 따라 폴리우레탄 타입 탑코트의 분산도 및 전기저항의 평가를 통해 탄소나노튜브의 최적함량을 찾기 위한 연구를 진행하였다. 초음파 분산을 통하여 탄소나노튜브를 폴리우레탄 탑코트 내에 분산하였고, 중력식 스프레이건을 이용하여 탄소섬유/에폭시 복합재 표면에 탄소나노튜브/폴리우레탄 탑코트의 코팅을 진행하였다. 4가지 용매를 이용하여 탄소섬유복합재와 탄소나노튜브/폴리우레탄 탑코트의 정적접촉각을 측정하였고, 이를 이용하여 접착일을 계산하였다. 탄소나노튜브/폴리우레탄 탑코트의 표면저항을 측정하였고 이를 통하여 탄소나노튜브의 최적 함량조건을 파악하였다. ASTM D3359를 기반으로 크로스 컷 시험을 진행하였고 이를 통하여 탄소나노튜브/폴리우레탄 탑코트의 부착특성을 평가하였다. 실험결과를 통해 탄소나노튜브의 최적 조건을 파악하였다.

Dispersion and electrical resistance (ER) properties of polyurethane (PU) type topcoat were evaluated using carbon nanotube (CNT) with different CNT weight fraction. CNT was dispersed in PU type topcoat using ultra sonication dispersion method. CNT/PU topcoat was coated on carbon fiber reinforced epoxy composite (CFRC) surface using gravity feed spraying method. Static contact angles of CFRC and CNT/PU topcoat were performed using 4 types of solvents to calculate the work of adhesion between CNT/PU topcoat and CFRC surface. Surface resistance of CNT added PU topcoat was measured to determine CNT dispersion. Adhesion property between CNT/PU topcoat and CFRC was determined via cross hatch cutting test based on ASTM D3359. The optimized condition of CNT weight fraction was found.

키워드

참고문헌

  1. Larsson, A., "The Interaction between a Lightning Flash and an Aircraft in Flight", Comptes Rendus Physique, Vol. 3, 2002, pp. 1423-1444. https://doi.org/10.1016/S1631-0705(02)01410-X
  2. Fisher, B.D., Taeuber, R.J., Ralph, J.T., and Crouch, K.E., "Implications of a Recent Lightning Strike to a NASA Jet Trainer", AIAA 26th Aerospace Sciences Meeting, Nevada, USA, Jan. 1988, pp. 1-10.
  3. Jones, C.C.R., Rowse, D., and Odam, G.A.M., "Probabilities of Catastrophe in Lightning Hazard Assessments", DOI: https://doi.org/10.4271/2001-01-2877 (2001).
  4. Gagne, M., and Therriault, D., "Lightning Strike Protection of Composites", Progress in Aerospace Sciences, Vol. 64, 2014, pp. 1-16. https://doi.org/10.1016/j.paerosci.2013.07.002
  5. Feraboli, P., and Miller, M., "Damage Resistance and Tolerance of Carbon/epoxy Composite Coupons Subjected to Simulated Lightning Strike", Composites: Part A, Vol. 40, 2009, pp. 954-967. https://doi.org/10.1016/j.compositesa.2009.04.025
  6. Causse, N., Benchimol, S., Martimeau, L., Carponcin, D., Antoine, L., Fogel, M., Jany, D., Eric, D., and Lacabanne, C., "Polymerization Study and Rheological Behavior of a PTM6 Epoxy Resin System during Preprocessing Step", Journal of Thermal Analysis and Calorimetry, Vol. 119, 2015, pp. 329-336. https://doi.org/10.1007/s10973-014-4147-y
  7. Schulz, S.C., Faiella, G., Buschhorn, S.T., Prado, L.A.S.A., Giordano, M., Schulte, K., and Bauhofer, W., "Combined Electrical and Rheological Properties of Shear Induced Multiwall Carbon Nanotube Agglomerates in Epoxy Suspensions", European Polymer Journal, Vol. 47, 2011, pp. 2069-2077. https://doi.org/10.1016/j.eurpolymj.2011.07.022
  8. Olowojoba, G., Sathyanarayana, S., Caglar, B., Kiss-Pataki, B., Irma, M., Hübner, C., and Elsner, P., "Influence of Process Parameters on the Morphology, Rheological and Dielectric Properties of Three-roll-milled Multiwalled Carbon Nanotube/epoxy Suspensions," Polymer, Vol. 54, 2013, pp. 188-198. https://doi.org/10.1016/j.polymer.2012.11.054
  9. Rehbin, J., Wierach, P., Gries, T., and Wiedemann, M., "Improved Electrical Conductivity of NCF-reinforced CFRP for Higher Damage Resistance to Lightning Strike", Composites: Part A, Vol. 100, 2017, pp. 352-360. https://doi.org/10.1016/j.compositesa.2017.05.014
  10. Rajesh, P.S.M., Sirois, F., and Therriault, D., "Damage Response of Composites Coated with Conducting Materials Subjected to Emulated Lightning Strikes", Materials and Design, Vol. 139, 2018, pp. 45-55. https://doi.org/10.1016/j.matdes.2017.10.017
  11. Li, Y., Xue, T., Li, R., Huang, X., and Zeng, L., "Influence of a Flberglass Layer on the Lightning Strike Damage Response of CFRP Laminates in the Dry and Hygrothermal Environments", Composite Structures, Vol. 187, 2018, pp. 179-189. https://doi.org/10.1016/j.compstruct.2017.12.057
  12. Wang, B., Duan, Y., Xin, Z., Yao, X., Abliz, D., and Ziegmann, G., "Fabrication of an Enriched Graphene Surface Protection of Carbon Fiber/epoxy Composites for Lightning Strike via a Percolating-assisted Resin Film Infusion Method", Composites Science and Technology, Vol. 158, 2018, pp. 51-60. https://doi.org/10.1016/j.compscitech.2018.01.047
  13. Chakravarthi, D.K., Khabashesku, V.N., Vaidyanathan, R., Blaine, J., Yarlagadda, S., Roseman, D., Zeng, Q., and Barrera, E.V., "Carbon Fiber-bismaleimide Composites Filled with Nickel-coated Single-walled Carbon Nanotubes for Lightningstrike Protection", Advanced Functional Materials, Vol. 21, 2011, pp. 2527-2533. https://doi.org/10.1002/adfm.201002442
  14. Yao, W., Bae, K.J., Jung, M.Y., and Cho, Y.R., "Transparent, Conductive, and Superhydrophobic Nanocomposite Coatings on Polymer Substrate", Journal of Colloid and Interface Science, Vol. 506, 2017, pp. 429-436. https://doi.org/10.1016/j.jcis.2017.07.071