• 제목/요약/키워드: Carbon nano particle

검색결과 124건 처리시간 0.023초

EGR Cooler에 CNC 첨가시 열교환 특성에 관한 연구 (A Study on the Heat Exchange Characteristics of EGR-Cooler with CNC)

  • 이병호;이중섭;김보한;정효민;정한식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.847-853
    • /
    • 2008
  • Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Circle fin exhaust pipes were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The designs adopted in this study were exhaust pipes with solid and hollow fins around them direct surface force measurement in water using a nano size colloidal probe Technique The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true Carbon nano Colloid size (<10nm), surface forces are increasingly important. Nanoparticles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. This paper use Water and CNC fluid at normal cooling system of EGR. Experimental result showed all good agreement at Re=$2.54{\times}10^{4}$.

Preparation and Characteristics of Core-Shell Structure with Nano Si/Graphite Nanosheets Hybrid Layers Coated on Spherical Natural Graphite as Anode Material for Lithium-ion Batteries

  • Kwon, Hae-Jun;Son, Jong-In;Lee, Sung-Man
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권1호
    • /
    • pp.74-81
    • /
    • 2021
  • Silicon (Si) is recognized as a promising anode material for high-energy-density lithium-ion batteries. However, under a condition of electrode comparable to commercial graphite anodes with low binder content and a high electrode density, the practical use of Si is limited due to the huge volume change associated with Si-Li alloying/de-alloying. Here, we report a novel core-shell composite, having a reversible capacity of ~ 500 mAh g-1, by forming a shell composed of a mixture of nano-Si, graphite nanosheets and a pitch carbon on a spherical natural graphite particle. The electrochemical measurements are performed using electrodes with 2 wt % styrene butadiene rubber (SBR) and 2 wt.% carboxymethyl cellulose (CMC) binder in an electrode density of ~ 1.6 g cm-3. The core-shell composites having the reversible capacity of 478 mAh g-1 shows the outstanding capacity retention of 99% after 100 cycles with the initial coulombic efficiency of 90%. The heterostructure of core-shell composites appears to be very effective in buffering the volume change of Si during cycling.

탄산(炭酸)세륨으로부터 나노크기 산화(酸化)세륨 제조연구(製造硏究) (Preparation of Nano Size Cerium Oxide from Cerium Carbonate)

  • 김성돈;김철주;윤호성
    • 자원리싸이클링
    • /
    • 제18권6호
    • /
    • pp.24-29
    • /
    • 2009
  • 나노크기의 산화세륨 분말을 제조하기 위해서는 출발물질로 탄산세륨[$Ce_2(CO_3)3{\cdot}XH_2O$]이 널리 사용되고 있는데, 탄산세륨은 소성을 통하여 탄산기체와 수증기를 방출하면서 더욱 작은 입자들로 쪼개진 다공성 구조의 산화세륨이 형성되며 이러한 다공성의 산화세륨을 분쇄함으로서 나노크기의 산화세륨을 얻을 수 있다. 본 연구에서는 염화세륨용액으로부터 중탄산암모늄을 첨가하여 제조된 탄산세륨의 소성온도, 분쇄시간, 유성밀의 회전속도, 분산제 첨가량 및 장입된 분쇄 볼 크기 등의 변화에 따라 얻어지는 산화세륨의 평균 입자크기 분석을 통하여 탄산세륨으로부터 나노크기의 산화세륨 제조공정 특성에 대하여 알아보았으며, 소성온도 $700^{\circ}C$, 분쇄시간 5시간 조건에서 평균 입자크기 160 nm의 산화세륨 분말을 제조할 수 있었다.

나노 실리카와 카본블랙이용 탄화열 반응으로 나노 SiC 합성 및 특성 (Synthesis of SiC Nanoparticles by a Sol-Gel Process)

  • 정광진;배동식
    • 한국재료학회지
    • /
    • 제23권4호
    • /
    • pp.246-249
    • /
    • 2013
  • Nano-sized ${\beta}$-SiC nanoparticles were synthesized combined with a sol-gel process and a carbothermal process. TEOS and carbon black were used as starting materials for the silicon source and carbon source, respectively. $SiO_2$ nanoparticles were synthesized using a sol-gel technique (Stober process) combined with hydrolysis and condensation. The size of the particles could be controlled by manipulating the relative rates of the hydrolysis and condensation reactions of tetraethyl orthosilicate (TEOS) within the micro-emulsion. The average particle size and morphology of synthesized silicon dioxide was about 100nm and spherical, respectively. The average particles size and morphology of the used carbon black powders was about 20nm and spherical, respectively. The molar ratio of silicon dioxide and carbon black was fixed to 1:3 in the preparation of each combination. $SiO_2$ and carbon black powders were mixed in ethanol and ball-milled for 12 h. After mixing, the slurries were dried at $80^{\circ}C$ in an oven. The dried powder mixtures were placed in alumina crucibles and synthesized in a tube furnace at $1400{\sim}1500^{\circ}C$ for 4 h with a heating rate of $10^{\circ}C$/min under flowing Ar gas (160 cc/min) and furnace cooling down to room temperature. SiC nanoparticles were characterized by XRD, TEM, and SAED. The XRD results showed that high purity beta silicon carbide with excellent crystallinity was synthesized. TEM revealed that the powders are spherical shape nanoparticles with diameters ranging from 15 to 30 nm with a narrow distribution.

Dye-Sensitized Metal Oxide Nanostructures and Their Photoelectrochemical Properties

  • Park, Nam-Gyu
    • 전기화학회지
    • /
    • 제13권1호
    • /
    • pp.10-18
    • /
    • 2010
  • Nanostructured metal oxides have been widely used in the research fields of photoelectrochemistry, photochemistry and opto-electronics. Dye-sensitized solar cell is a typical example because it is based on nanostructured $TiO_2$. Since the discovery of dye-sensitized solar cell in 1991, it has been considered as a promising photovoltaic solar cell because of low-cost, colorful and semitransparent characteristics. Unlike p-n junction type solar cell, dye-sensitized solar cell is photoelectrochemical type and is usually composed of the dye-adsorbed nanocrystalline metal oxide, the iodide/tri-iodide redox electrolyte and the Pt and/or carbon counter electrode. Among the studied issues to improve efficiency of dye-sensitized solar cell, nanoengineering technologies of metal oxide particle and film have been reviewed in terms of improving optical property, electron transport and electron life time.

염용액으로부터 제조된 Cu/TiO2복합분말의 광촉매 특성 (Photocatalysis Characteristics of Nano Cu/TiO2 Composite Powders Fabricated from Salt Solution)

  • 고봉석;안인섭;배승열;이상진
    • 한국분말재료학회지
    • /
    • 제10권2호
    • /
    • pp.136-141
    • /
    • 2003
  • In the present study, $TiO_2$ imbedded copper matrix powders have been successfully prepared from the ($CuSO_4+TiO_2+Zn$) composite salt solution. The composite $Cu/TiO_2$ powders were formed by drying the solution at $200{\sim}~400^{\circ}C$ in the hydrogen atmosphere. Photocatalytic characteristics was evaluated by detecting TOC (total organic carbon) amount with TOC analyzer (model 5000A Shimadzu Co). Phase analysis of $Cu/TiO_2$ composite powders was carried out by XRD, DSC and powder size was measured with TEM. The mean particle size of composite powders was about 100 nm and a few zinc and copper oxide phases was included. The reduction ratio of TOC amount was 60% by the composite $Cu/TiO_2$ powders under the UV irradiation for 8 hours.

Effects of experimental conditions on synthesis of titanium carbide crystallites

  • Choi, Jeong-Gil
    • 한국결정성장학회지
    • /
    • 제20권2호
    • /
    • pp.80-84
    • /
    • 2010
  • The temperature-programmed reduction of titanium oxide ($TiO_2$) with pure $CH_4$ was used for the preparation of titanium carbide crystallites. The synthesized materials had the different surface areas, indicating that the structural properties of these materials were strong functions of two different heating rates and space velocity employed. The titanium carbide crystallites were active for $NH_3$ decomposition. Since the reactivity varied with changes in the particle size, ammonia decomposition reactivity over the titanium carbides crystallites appeared to be related to the different active species. The reactivities of titanium carbide crystallites were two and three times lower than those of the vanadium and molybdenum carbide crystallites, respectively. These results suggested that the difference in activities might be related to the degree of electron transfer between metals and carbon.

수소연료전지용 탄탈륨 탄화물에 대한 암모니아 분해반응 (Ammonia Decomposition Over Tantalum Carbides of Hydrogen Fuel Cell)

  • 최정길
    • 신재생에너지
    • /
    • 제9권1호
    • /
    • pp.51-59
    • /
    • 2013
  • Tantalum carbide crystallites which is to be used for $H_2$ fuel cell has been synthesized via a temperature-programmed reduction of $Ta_2O_5$ with pure $CH_4$. The resultant Ta carbide crystallites prepared using two different heating rates and space velocity exhibit the different surface areas. The $O_2$ uptake has a linear relation with surface area, corresponding to an oxygen capacity of $1.36{\times}10^{13}\;O\;cm^{-2}$. Tantalum carbide crystallites are very active for hydrogen production form ammonia decomposition reaction. Tantalum carbides are as much as two orders of magnitude more active than Pt/C catalyst (Engelhard). The highest activity has been observed at a ratio of $C_1/Ta^{{\delta}+}=0.85$, suggesting the presence of electron transfer between metals and carbon in metal carbides.

Ammonia decomposition over titanium carbides

  • Choi, Jeong-Gil
    • 한국결정성장학회지
    • /
    • 제22권6호
    • /
    • pp.269-273
    • /
    • 2012
  • Ammonia decomposition over titanium carbides were investigated using eight different samples which have been synthesized by TPR (temperature-programmed reduction) method of titanium oxide ($TiO_2$) with pure $CH_4$. The resulting materials which were synthesized using wo different heating rates and space velocity exhibited the different surface areas. These results indicated that the structural properties of these materials have been related to heating rates and space velocity employed. The titanium carbides prepared in this study proved to be active for ammonia decomposition, and the activity changed with the particle size/surface area. These showed the relationship between ammonia decomposition activity and the different active species. Compared to molybdenum carbide, the titanium carbides were one order of magnitude less active, suggesting the correlation between the activity difference and the degree of electron transfer between metals and carbon in metal carbides.

Nanomaterials for Advanced Electrode of Low Temperature Solid Oxide Fuel Cells (SOFCs)

  • Ishihara, Tatsumi
    • 한국세라믹학회지
    • /
    • 제53권5호
    • /
    • pp.469-477
    • /
    • 2016
  • The application of nanomaterials for electrodes of intermediate temperature solid oxide fuel cells (SOFC) is introduced. In conventional SOFCs, the operating temperature is higher than 1073 K, and so application of nanomaterials is not suitable because of the high degradation rate that results from sintering, aggregation, or reactions. However, by allowing a decrease of the operating temperature, nanomaterials are attracting much interest. In this review, nanocomposite films with columnar morphology, called double columnar or vertically aligned nanocomposites and prepared by pulsed laser ablation method, are introduced. For anodes, metal nano particles prepared by exsolution from perovskite lattice are also applied. By using dissolution and exsolution into and from the perovskite matrix, performed by changing $P_{O2}$ in the gas phase at each interval, recovery of the power density can be achieved by keeping the metal particle size small. Therefore, it is expected that the application of nanomaterials will become more popular in future SOFC development.