• Title/Summary/Keyword: Carbon frame

Search Result 121, Processing Time 0.023 seconds

Effect of dimensionless nonlocal parameter: Vibration of double-walled CNTs

  • Hussain, Muzamal;Asghar, Sehar;Khadimallah, Mohamed Amine;Ayed, Hamdi;Alghamdi, Sami;Bhutto, Javed Khan;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.30 no.4
    • /
    • pp.269-276
    • /
    • 2022
  • In this paper, frequency vibrations of double-walled carbon nanotubes (CNTs) has been investigated based upon nonlocal elastic theory. The inference of small scale is being perceived by establishing nonlocal Love shell model. The wave propagation approach has been operated to frame the governing equations as eigen value system. An innovational nonlocal model to examine the scale effect on vibrational behavior of armchair, zigzag and chiral of double-walled CNTs. An appropriate selection of material properties and nonlocal parameter has been considered. The influence of dimensionless nonlocal parameter has been studied in detail. The dominance of end condition via nonlocal parameter is explained graphically. The results generated furnish the evidence regarding applicability of nonlocal shell model and also verified by earlier published literature.

Sequence and phylogenetic analysis of the phnS gene encoding 2-hydroxychromene-2-carboxylate isomerase in Sphingomonas chungbukensis DJ77 (Sphingomonas chungbukensis DJ77 균주에서 2- hydroxychromene-2-carboxylate isomerase를 암호화하는 phnS 유전자의 염기서열과 상동성 분석)

  • 엄현주;강민희;김영필;김성재;김영창
    • Korean Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.123-127
    • /
    • 2003
  • Sphingomonas chungbukensis DJ77 is able to metabolize phenanthrene as the sole carbon and energy source. The plasmid pUPX5 includes phnS gene encoding 2-hydroxychromene-2-carboxylate (HCCA) isomerase, which is needed for phenanthrene and naphthanene degradation. We determined the nucleotide sequence of DNA fragment of 3271 bp which included the phnS gene. The fragment included an open reading frame of 594 bp which has ATG initiation codon and TAA termination codon and GGAA ribosomal binding site. The predicted amino acid sequence of the enzyme consists of 198 amino acids. The deduced amino acid sequence of the phnS enzyme exhibited 94% identity with that of the corresponding enzyme in Sphingomonas aromaticivorans F199. The phnS gene is located downstream and in the same operon as phnQ and phnR, encoding a 2,3-dihydroxybiphenyl 1,2-dioxygenase and a ferredoxin component of biphenyl dioxygenase, respectively.

Advances in the Technology of Solid State Hydrogen Storage Methods Using Novel Nanostructured Materials (나노구조물질을 이용한 고체수소저장 기술 동향)

  • Zacharia, Renju;Kim, Keun Young;Nahm, Kee Suk
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.439-451
    • /
    • 2005
  • This article provides a panoramic overview of the state-of-the-art technologies in the field of solid-state hydrogen storage methods. The emerging solid-state hydrogen storage techniques, such as nanostructured carbon materials, metal organic framework (MOFs), metal and inter-metal hydrides, clathrate hydrates, complex chemical hydride are discussed. The hydrogen storage capacity of the solid-sate hydrogen storage materials increases in proportion to the surface area of the solid materials. Also, it is believed that new functional nanostructured materials will offer far-reaching solutions to the development of on-board hydrogen storage system for the application of the transportation vehicles.

Fabrication of carbon nanotube emitters by filtration through a metal mesh

  • Choi, Ju-Sung;Lee, Han-Sung;Gwak, Jeung-Chun;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.150-150
    • /
    • 2010
  • Carbon nanotubes have drawn attention as one of the most promising emitter materials ever known not only due to their nanometer-scale radius of curvature at tip and extremely high aspect ratios but also due to their strong mechanical strength, excellent thermal conductivity, good chemical stability, etc. Some applications of CNTs as emitters, such as X-ray tubes and microwave amplifiers, require high current emission over a small emitter area. The field emission for high current density often damages CNT emitters by Joule heating, field evaporation, or electrostatic interaction. In order to endure the high current density emission, CNT emitters should be optimally fabricated in terms of material properties and morphological aspects: highly crystalline CNT materials, low gas emission during electron emission in vacuum, optimal emitter distribution density, optimal aspect ratio of emitters, uniform emitter height, strong emitter adhesion onto a substrate, etc. We attempted a novel approach to fabricate CNT emitters to meet some of requirements described above, including highly crystalline CNT materials, low gas emission, and strong emitter adhesion. In this study, CNT emitters were fabricated by filtrating an aqueous suspension of highly crystalline thin multiwalled CNTs (Hanwha Nanotech Inc.) through a metal mesh. The metal mesh served as a support and fixture frame of CNT emitters. When 5 ml of the CNT suspension was engaged in filtration through a 400 mesh, the CNT layers were formed to be as thick as the mesh at the mesh openings. The CNT emitter sample of $1{\times}1\;cm^2$ in size was characteristic of the turn-on electrical field of 2.7 V/${\mu}m$ and the current density of 14.5 mA at 5.8 V/${\mu}m$ without noticeable deterioration of emitters. This study seems to provide a novel fabrication route to simply produce small-size CNT emitters for high current emission with reliability.

  • PDF

Impact of nanocomposite material to counter injury in physical sport in the tennis racket

  • Hao Jin;Bo Zhang;Xiaojing Duan
    • Advances in nano research
    • /
    • v.14 no.5
    • /
    • pp.435-442
    • /
    • 2023
  • Sports activities, including playing tennis, are popular with many people. As this industry has become more professionalized, investors and those involved in sports are sure to pay attention to any tool that improves athletes' performance Tennis requires perfect coordination between hands, eyes, and the whole body. Consequently, to perform long-term sports, athletes must have enough muscle strength, flexibility, and endurance. Tennis rackets with new frames were manufactured because tennis players' performance depends on their rackets. These rackets are distinguished by their lighter weight. Composite rackets are available in many types, most of which are made from the latest composite materials. During physical exercise with a tennis racket, nanocomposite materials have a significant effect on reducing injuries. Materials as strong as graphite and thermoplastic can be used to produce these composites that include both fiber and filament. Polyamide is a thermoplastic typically used in composites as a matrix. In today's manufacturing process, materials are made more flexible, structurally more vital, and lighter. This paper discusses the production, testing, and structural analysis of a new polyamide/Multi-walled carbon nanotube nanocomposite. This polyamide can be a suitable substitute for other composite materials in the tennis racket frame. By compression polymerization, polyamide was synthesized. The functionalization of Multi-walled carbon nanotube (MWCNT) was achieved using sulfuric acid and nitric acid, followed by ultrasonic preparation of nanocomposite materials with weight percentages of 5, 10, and 15. Fourier transform infrared (FTIR) and Nuclear magnetic resonance (NMR) confirmed a synthesized nanocomposite structure. Nanocomposites were tested for thermal resistance using the simultaneous thermal analysis (DTA-TG) method. scanning electron microscopy (SEM) analysis was used to determine pores' size, structure, and surface area. An X-ray diffraction analysis (XRD) analysis was used to determine their amorphous nature.

Cloning of a Paenibacillus sp. Endo-${\circ}$-1,4-Glucanase Gene and Its Coexpression with the Endomyces fibuliger ${\circ}$-Glucosidase Gene in Saccharomyces cerevisiae

  • KIM, HYUNJIN;JI-YOUNG YANG;HYEON-GYU LEE;JAEHO, CHA
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.685-692
    • /
    • 2001
  • A gene, Egl, from Paenibacillus sp. KCTC 8848P encoding endo-${\circ}$-1,4-glucanase was cloned and expressed in Escherichia coli. It consisted of an open reading frame of 1,191 bp for a protein that consisted of 397 amino acids with a molecular weight of 44,539 Da. The deduced amino acid sequence of the endo-${\circ}$-1,4-glucanase gene had a 94% similarity to the endo-$\beta$-1,4-glucanase of Bacillus polymyxa. The Egl gene was also expressed in Saccharomyces cerevisiae secreting Endomyces fibuliger $\beta$-glucosidase (BGL1) under the control of the alcohol dehydrogenase (ADC1) gene promoter, S. cerevisiae transformant producing both endo-${\circ}$-1,4-glucanase and ${\circ}$-glucosidase grew on carboxymethyl cellulose as the sole carbon source.

  • PDF

Catabolite Repression of the Bacillus stearothermophilus $\beta$-Xylosidase Gene (xylA) in Bacillus subtilis

  • Cho, Ssang-Goo;Choi, Yong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.21-27
    • /
    • 1998
  • The xylA gene of Bacillus stearothermophilus encoding the major ${\beta}$-xylosidase was previously cloned and sequenced. In the present study we examined the regulation of the cloned xylA gene expression in Bauillus subtilis MW15 carrying the xylA::aprA fusion plasmids. The induction of the fused xylA gene expression remained uninfluenced by any of the carbon sources tested but the gene expression was repressed about 2-3 fold in the presence of glucose. Two CRE-like sequences (CRE-1: nucleotides + 124 to +136 and CRE-2: +247 to +259) were recognized within the reading frame region of the xylA gene. The deletion experiments showed that the CRE-2 sequence had a role in catabolite repression (CR) as a true CRE of the xylA gene, but the CRE-1 had no effect on CR of the xylA gene expression. Surprisingly, the deletion of the CRE- 1 sequence reduced about 2~3 fold of the expression of the xylA fused gene. The repression ratios of the xylA gene expression were estimated to be about 0.4 from the assay of subtilisin activity, and about 0.3 at the level of transcription by determining the amounts of xylA transcripts in B. subtilis. While, the level of CR of the xylA gene was assessed to be about l0-fold in previous work when the relative amounts of the xylA transcripts were measured in B. stearothermophilus.

  • PDF

PLASTICITY-BASED WELDING DISTORTION ANALYSIS OF THIN PLATE CONNECTIONS

  • Jung, Gonghyun;Tsai, Chon L.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.694-699
    • /
    • 2002
  • In autobody assembly, thin-wall, tubular connections have been used for the frame structure. Recent interest in light materials, such as aluminum or magnesium alloys, has been rapidly growing for weight reduction and fuel efficiency. Due to higher thermal expansion coefficient, low stiffness/strength, and low softening temperature of aluminum and magnesium alloys, control of welding-induced distortion in these connections becomes a critical issue. In this study, the material sensitivity to welding distortion was investigated using a T-tubular connection of three types materials; low carbon steel (A500 Gr. A), aluminum alloy (5456-H116) and magnesium alloy (AZ91C-T6). An uncoupled thermal and mechanical finite element analysis scheme using the ABAQUS software program was developed to model and simulate the welding process, welding procedure and material behaviors. The predicted angular distortions were correlated to the cumulative plastic strains. A unique relationship between distortion and plastic strains exists for all three materials studied. The amount of distortion is proportional to the magnitude and distribution of the cumulative plastic strains in the weldment. The magnesium alloy has the highest distortion sensitivity, followed by the other two materials with the steel connection having the least distortion. Results from studies of thin-aluminum plates show that welding distortion can be minimized by reducing the cumulative plastic strains by preventing heat diffusion into the base metal using a strong heat sink placed directly beneath the weld. A rapid cooling method is recommended to reduce welding distortion of magnesium tubular connections.

  • PDF

Analysis of Transport Parameters in an Interacting Two-Band Model with Application to $p^{+}$-GaAs

  • Kim, B.W.;Majerfeld, A.
    • ETRI Journal
    • /
    • v.17 no.3
    • /
    • pp.17-43
    • /
    • 1995
  • We present a comprehensive derivation of the transport of holes involving an interacting two-valence-band system in terms of a generalized relaxation time approach. We sole a pair of semiclassical Boltzmann equations in a general way first, and then employ the conventional relaxation time concept to simplify the results. For polar optical phonon scattering, we develop a simple method th compensate for the inherent deficiencies in the relaxation time concept and apply it to calculate effective relaxation times separately for each band. Also, formulas for scattering rates and momentum relaxation times for the two-band model are presented for all the major scattering mechanisms for p-type GaAs for simple, practical mobility calculations. Finally, in the newly proposed theoretical frame-work, first-principles calculations for the Hall mobility and Hall factor of p-type GaAs at room temperature are carried out with no adjustable parameters in order to obtain a direct comparison between the theory and recent available experimental results, which would stimulate further analysis toward better understanding of the complex transport properties of the valence band. The calculated Hall mobilities show a general agreement with our experimental data for carbon doped p-GaAs samples in a range of degenerate hole densities. The calculated Hall factors show $r_H$=1.25~1.75 over all hole densities($2{\times}10^{17}{\sim}1{\times}10^{20}cm^{-3}$ considered in the calculations.

  • PDF

Evaluation and Direction of the New Town Development in Korea (우리나라 신도시 개발의 평가 및 발전방향)

  • Kim, Dong-Yoon
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.13 no.2
    • /
    • pp.5-16
    • /
    • 2013
  • With regard to the new town developments which have supplied lots of houses in a short period of time in Korea this study aims to evaluation and finding out problems of the developments finally to suggest the direction. A new town's competitiveness model set in the previous paper takes a role of research frame to recognize the problems and to show the direction. The model explains that new town's competitiveness is composed of 4 factors; Self-sufficiency, Innovativenss, Identity and Sustainability. Problems of the developments are as follows; incongruity of spatial structure especially in the capital region, deficiency of self-sufficiency resulted from single-use development, restriction on mixed development by a number of regulations in capital region, low business value, grand scale of land compensation, house oriented planning guidance, unfair share of infrastructure fee, and physical structure depending mainly on fossil energy. Based on this recognition this study conclusively suggests corresponding direction such as role performance as a means of urban growth management, promotion of quality of life by accumulating social capital, introduction of socially sustainable management program for the new towns, discovery and creation of town's value, reexamination of self-sufficiency's meaning or target, selective deregulation of metropolitan development, institutional strategy for cost reduction, changeover from house index to urban function oriented index, and pursuit of low-carbon green town.